Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Syntheses, Structures, Characterisation, and Spectroscopic Properties of CuI and AgI Complexes with Extended C–H···π and π···π Interactions

Ting-Hong Huang A and Min-Hua Zhang A B
+ Author Affiliations
- Author Affiliations

A Key Laboratory for Green Chemical Technology (Ministry of Education of China), R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China.

B Corresponding author. Email: mhzhang@tju.edu.cn

Australian Journal of Chemistry 67(6) 887-894 https://doi.org/10.1071/CH13566
Submitted: 21 October 2013  Accepted: 29 January 2014   Published: 28 February 2014

Abstract

Based on the ligands N,N′-bis(pyridin-2-ylmethylene)benzene-1,4-diamine (pmb) and N,N′-bis(pyridin-2-ylmethylene)biphenyl-4,4′-diamine (pmbb), the three compounds [Cu2(pmb) (PPh3)2(Cl)2] (1), [Cu2(pmbb)(CH3CN)2(PPh3)2](BF4)2·2DMF (2), and [Ag2(pmbb)(PPh3)2] (ClO4)2 (3) have been synthesised and characterised. Structural analysis reveals that all of these complexes contain 1D supramolecular arrays, with different variations in π-stacking patterns and intermolecular C–H···π interactions. Crystal structures of 1 and 2 contain 1D tape-like arrays formed by C–H···π and π···π interactions, and an ordered-layer-lattice of DMF and BF4 in 2 is located between the one-dimensional array. For 3, π-stacking interactions lead to the construction of 1D supramolecular arrays and a 2D network. The results indicate that C–H···π and π···π interactions play an important role in the construction of the supramolecular structure. In addition, the absorption peaks of complexes 1 and 3 in the solid state at room temperature show intraligand charge transfer and metal-to-ligand charge transfer absorptions. The optical and fluorescent properties of 2 were also studied in acetonitrile solution at room temperature.


References

[1]  E. S. Andersen, M. Dong, M. M. Nielsen, K. Jahn, R. Subramani, W. Mamdouh, M. M. Golas, B. Sander, H. Stark, C. L. P. Oliveira, J. S. Pedersen, V. Birkedal, F. Besenbacher, K. V. Gothelf, J. Kjems, Nature 2009, 459, 73.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsF2ltrs%3D&md5=062457faeff18c679b41bf3358ef192aCAS | 19424153PubMed |

[2]  S. N. Georgiades, N. H. Abd Karim, K. Suntharalingam, R. Vilar, Angew. Chem. Int. Ed. 2010, 49, 4020.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFSltb0%3D&md5=27d84d0b83f835cda91acb7e1cf2d2e8CAS |

[3]  Y. He, T. Ye, M. Su, C. Zhang, A. E. Ribbe, W. Jiang, C. Mao, Nature 2008, 452, 198.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjt1Gmsr4%3D&md5=531712c3be9d76003dccf43bafab2567CAS | 18337818PubMed |

[4]  C. V. Kumar, M. R. Duff, J. Am. Chem. Soc. 2009, 131, 16024.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht12hsrnP&md5=b70bfa3e3c4e2288c509c357cbf4d8e8CAS | 19845378PubMed |

[5]  P. P. Neelakandan, Z. Pan, M. Hariharan, Y. Zheng, H. Weissman, B. Rybtchinski, F. D. Lewis, J. Am. Chem. Soc. 2010, 132, 15808.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlSntbvM&md5=d4eeb40a8f6f37993bee8be227e54007CAS | 20954733PubMed |

[6]  X. Xu, H. Yuan, J. Chang, B. He, Z. Gu, Angew. Chem. Int. Ed. 2012, 51, 3130.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVOqtLg%3D&md5=b68233d7858202e13fd7e45af9dfd2fdCAS |

[7]  R. Iwaura, F. J. M. Hoeben, M. Masuda, A. P. H. J. Schenning, E. W. Meijer, T. Shimizu, J. Am. Chem. Soc. 2006, 128, 13298.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1aksLY%3D&md5=a899857b6ca1f5dbc8794aea45ef80fdCAS | 17017812PubMed |

[8]  P. A. Korevaar, S. J. George, A. J. Markvoort, M. M. J. Smulders, P. A. J. Hilbers, A. P. H. J. Schenning, T. F. A. De Greef, E. W. Meijer, Nature 2012, 481, 492.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVKjtbs%3D&md5=21ab8cd4d63b7f32dbd1c2696777016cCAS | 22258506PubMed |

[9]  G. V. Oshovsky, D. N. Reinhoudt, W. Verboom, Angew. Chem. Int. Ed. 2007, 46, 2366.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktVaguro%3D&md5=3c67d1e9f33179d252d3f75ece97e214CAS |

[10]  V. Percec, M. Glodde, T. K. Bera, Y. Miura, I. Shiyanovskaya, K. D. Singer, V. S. K. Balagurusamy, P. A. Heiney, I. Schnell, A. Rapp, H. W. Spiess, S. D. Hudson, H. Duan, Nature 2002, 417, 384.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  M. Peterca, V. Percec, M. R. Imam, P. Leowanawat, K. Morimitsu, P. A. Heiney, J. Am. Chem. Soc. 2008, 130, 14840.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ahs7fO&md5=9d8303e921f02660082a3655039ac41eCAS | 18841962PubMed |

[12]  T. Yokoyama, S. Yokoyama, T. Kamikado, Y. Okuno, S. Mashiko, Nature 2001, 413, 619.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MrmvFeisw%3D%3D&md5=dc8b77282797a1f50c41450cf24ee3a4CAS | 11675782PubMed |

[13]  W. S. Childers, A. K. Mehta, R. Ni, J. V. Taylor, D. G. Lynn, Angew. Chem. Int. Ed. 2010, 49, 4104.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFSltbw%3D&md5=8a86815786f79d85aa1b220a2e4740feCAS |

[14]  Z. Shi, J. Liu, T. Lin, F. Xia, P. N. Liu, N. Lin, J. Am. Chem. Soc. 2011, 133, 6150.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1yltrg%3D&md5=6e304ad331fb23111c7b529e1b2ffa9eCAS | 21466153PubMed |

[15]  A. J. Wilson, Angew. Chem. Int. Ed. 2010, 49, 4011.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFSlu7Y%3D&md5=7a6bf33890b3ae2b0542259d36c48240CAS |

[16]  L.-C. Gui, X.-J. Wang, Q.-L. Ni, M. Wang, F.-P. Liang, H.-H. Zou, J. Am. Chem. Soc. 2012, 134, 852.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs12hsLbI&md5=df7f6c111130cabd30c36bacdf2a01e6CAS | 22201454PubMed |

[17]  E. M. Lambert, C. Viravaidya, M. Li, S. Mann, Angew. Chem. Int. Ed. 2010, 49, 4100.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFSlu74%3D&md5=3a14391f335caf77bceacbe55591e62eCAS |

[18]  H. Mansikkamäki, M. Nissinen, K. Rissanen, Angew. Chem. Int. Ed. 2004, 43, 1243.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  H. Uno, A. Masumoto, N. Ono, J. Am. Chem. Soc. 2003, 125, 12082.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1Cjt7s%3D&md5=3159aa9896ae0c4fcce6b37e839e97bfCAS | 14518980PubMed |

[20]  J. D. Wood, J. L. Jellison, A. D. Finke, L. Wang, K. N. Plunkett, J. Am. Chem. Soc. 2012, 134, 15783.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12isb7L&md5=1bfe0fcf0a2e926ccec9de1a6ec8caacCAS | 22938098PubMed |

[21]  C. Janiak, J. Chem. Soc., Dalton Trans. 2000, 3885.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotlKmtb0%3D&md5=4e117ef7be9a41c7ae40ad30cca39361CAS |

[22]  J. Ahn, S. Park, J. H. Lee, S. H. Jung, S.-J. Moon, J. H. Jung, Chem. Commun. 2013, 49, 2109.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVOisrY%3D&md5=60402cdbd2fd9025ff21eb006e9c5134CAS |

[23]  A. R. Choudhury, K. Islam, M. T. Kirchner, G. Mehta, T. N. Guru Row, J. Am. Chem. Soc. 2004, 126, 12274.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVOqs7k%3D&md5=732000e087ced03435e939f48b538ed3CAS | 15453754PubMed |

[24]  C. D. Tatko, M. L. Waters, J. Am. Chem. Soc. 2004, 126, 2028.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFWiug%3D%3D&md5=3df11250e42ced4d3392ec06d96521ceCAS | 14971936PubMed |

[25]  S. Tsuzuki, A. Fujii, Phys. Chem. Chem. Phys. 2008, 10, 2584.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsVOntLk%3D&md5=4d529edb1903f2bc82dd00ca035ac707CAS | 18464973PubMed |

[26]  J. Zhang, J. Chen, B. Xu, L. Wang, S. Ma, Y. Dong, B. Li, L. Ye, W. Tian, Chem. Commun. 2013, 49, 3878.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlslagsb0%3D&md5=b48e7942577140f73101caa98f0ad7b3CAS |

[27]  E. Hartmann, R. M. Gschwind, Angew. Chem. Int. Ed. 2013, 52, 2350.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntFamtQ%3D%3D&md5=7252065de9fdb3b809cbeb60c6dd44bbCAS |

[28]  S. Turega, M. Whitehead, B. R. Hall, A. J. H. M. Meijer, C. A. Hunter, M. D. Ward, Inorg. Chem. 2013, 52, 1122.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlt1artg%3D%3D&md5=2b5eed4f2d4fd1bc784eec7dea25abbbCAS | 23301770PubMed |

[29]  M. Hutin, C. J. Cramer, L. Gagliardi, A. R. M. Shahi, G. Bernardinelli, R. Cerny, J. R. Nitschke, J. Am. Chem. Soc. 2007, 129, 8774.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVGlsLw%3D&md5=11a0c8828c2efb6bb1319195566194b8CAS | 17592841PubMed |

[30]  W. Meng, J. K. Clegg, J. R. Nitschke, Angew. Chem. Int. Ed. 2012, 51, 1881.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvVWgug%3D%3D&md5=f694ad93dca9d444656a29b10db966f4CAS |

[31]  J. R. Nitschke, M. Hutin, G. Bernardinelli, Angew. Chem. Int. Ed. 2004, 43, 6724.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXoslKk&md5=eeba7219f489683602b5d763e2605291CAS |

[32]  J. R. Nitschke, D. Schultz, G. Bernardinelli, D. Gérard, J. Am. Chem. Soc. 2004, 126, 16538.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVSmtL3F&md5=cf3627707918ff7623fda96f8bcc9bf1CAS | 15600358PubMed |

[33]  A. Wada, Q. Zhang, T. Yasuda, I. Takasu, S. Enomoto, C. Adachi, Chem. Commun. 2012, 48, 5340.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtlOqs7Y%3D&md5=6ae0b9faf9c05240255c5592c4512584CAS |

[34]  J. C. Barnes, M. Juríček, N. L. Strutt, M. Frasconi, S. Sampath, M. A. Giesener, P. L. McGrier, C. J. Bruns, C. L. Stern, A. A. Sarjeant, J. F. Stoddart, J. Am. Chem. Soc. 2013, 135, 183.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1yhsLfL&md5=35eaa7beed4d700f4365785ece9ada1cCAS | 22928610PubMed |

[35]  B. Song, Z. Wang, S. Chen, X. Zhang, Y. Fu, M. Smet, W. Dehaen, Angew. Chem. Int. Ed. 2005, 44, 4731.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnvVSqsLw%3D&md5=b3683b833eb5bf6e94e6aab53f5bb176CAS |

[36]  L. J. Childs, N. W. Alcock, M. J. Hannon, Angew. Chem. Int. Ed. 2001, 113, 1113.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  B. Nohra, S. Graule, C. Lescop, R. Réau, J. Am. Chem. Soc. 2006, 128, 3520.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhslekur0%3D&md5=a916f667d3f09c61c34c2f618d525690CAS | 16536516PubMed |

[38]  N. Chanda, B. Mondal, V. G. Puranik, G. K. Lahiri, Polyhedron 2002, 21, 2033.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotFGnt7o%3D&md5=a076de5a0b5965dac7118b5288dea876CAS |

[39]  J. Fan, J. W. Bats, M. Schmittel, Inorg. Chem. 2009, 48, 6338.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1Wrsr4%3D&md5=7f5c8447d42f265a0502a8e0437e6d75CAS | 19527007PubMed |

[40]  S. Zarra, M. M. J. Smulders, Q. Lefebvre, J. K. Clegg, J. R. Nitschke, Angew. Chem. Int. Ed. 2012, 51, 6882.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xot12hurg%3D&md5=c2e1d9e0d42059fe87d5875f4f8169ffCAS |

[41]  G. M. Sheldrick, SHELXL 97: Program for the Solution of Crystal Structure 1997 (University of Gottingen: Gottingen).

[42]  S. Michalik, J. Coord. Chem. 2012, 65, 1189.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktlCjtrk%3D&md5=920028d9d0fe05829331032548916fdfCAS |

[43]  D. Tzimopoulos, A. Czapik, S. Kotoulas, J. Mohanraj, M. Gdaniec, P. D. Akrivos, J. Coord. Chem. 2012, 65, 393.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Knu7w%3D&md5=778daa961e43936a1e9492371d7081deCAS |

[44]  M. Barboiu, E. Petit, A. van der Lee, G. Vaughan, Inorg. Chem. 2006, 45, 484.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlajtrzE&md5=bba48dbc1bb49e43c38f7401e8e30aeeCAS | 16411676PubMed |

[45]  P. Mal, D. Schultz, K. Beyeh, K. Rissanen, J. R. Nitschke, Angew. Chem. Int. Ed. 2008, 47, 8297.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12htbvF&md5=ed543e2cb29b3925fa50d3ca6bdf013dCAS |

[46]  H.-C. Wu, P. Thanasekaran, C.-H. Tsai, J.-Y. Wu, S.-M. Huang, Y.-S. Wen, K.-L. Lu, Inorg. Chem. 2006, 45, 295.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ygu7vJ&md5=df42478cafec97b3f737e508fbae88a2CAS | 16390068PubMed |

[47]  G. Attilio Ardizzoia, S. Brenna, F. Castelli, S. Galli, Inorg. Chim. Acta 2009, 362, 3507.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1eju78%3D&md5=db32b1a0d4337f57519ee2c92c79f9acCAS |

[48]  M. Winter, WebElements Periodic Table (Professional Edition). Available at http://www.webelements.com

[49]  X.-L. Li, Y.-B. Ai, B. Yang, J. Chen, M. Tan, X.-L. Xin, Y.-H. Shi, Polyhedron 2012, 35, 47.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  J. Min, Q. Zhang, W. Sun, Y. Cheng, L. Wang, Dalton Trans. 2011, 40, 686.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Wjtb3F&md5=597c8648bc687d859e36070ab1d7d020CAS | 21127783PubMed |

[51]  S. Roy, T. K. Mondal, P. Mitra, E. L. Torres, C. Sinha, Polyhedron 2011, 30, 913.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVGitLg%3D&md5=632454343609b70be9176013307f6d41CAS |

[52]  K. Onodera, N. C. Kasuga, T. Takashima, A. Hara, A. Amano, H. Murakami, K. Nomiya, Dalton Trans. 2007, 3646.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptVWitLg%3D&md5=fe54e58f06a8229bee112f7b88869592CAS | 17700827PubMed |

[53]  R. Horvath, M. G. Fraser, S. A. Cameron, A. G. Blackman, P. Wagner, D. L. Officer, K. C. Gordon, Inorg. Chem. 2013, 52, 1304.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVSquw%3D%3D&md5=3e745bd9cc200c65edc08510c16e7082CAS | 23311357PubMed |

[54]  X. Liu, H. Nan, W. Sun, Q. Zhang, M. Zhan, L. Zou, Z. Xie, X. Li, C. Lu, Y. Cheng, Dalton Trans. 2012, 41, 10199.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFKnsLzM&md5=8ff459b91e49e32a3ec3265440c9172aCAS | 22772090PubMed |

[55]  M. Sandroni, M. Kayanuma, M. Rebarz, H. Akdas-Kilig, Y. Pellegrin, E. Blart, H. Le Bozec, C. Daniel, F. Odobel, Dalton Trans. 2013, 42, 14628.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFSms7jI&md5=28a0cc42abe3e5ea0800681be36d80c5CAS | 23986261PubMed |

[56]  A. Makal, J. Benedict, E. Trzop, J. Sokolow, B. Fournier, Y. Chen, J. A. Kalinowski, T. Graber, R. Henning, P. Coppens, J. Phys. Chem. A 2012, 116, 3359.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1SqsLc%3D&md5=8ddc8c5598d3e7e436d74322ab064f5dCAS | 22385365PubMed |

[57]  P. A. Papanikolaou, N. V. Tkachenko, Phys. Chem. Chem. Phys. 2013, 15, 13128.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFWksrfN&md5=8aea4bb6d4150db663dc7b6d9bd22dadCAS | 23824232PubMed |

[58]  K. Matsumoto, T. Shindo, N. Mukasa, T. Tsukuda, T. Tsubomura, Inorg. Chem. 2010, 49, 805.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvVGrsw%3D%3D&md5=18f325d112538212f67d965e2227d610CAS | 20055423PubMed |

[59]  I. Srnová-Šloufová, B. Vlčková, T. L. Snoeck, D. J. Stufkens, P. Matějka, Inorg. Chem. 2000, 39, 3551.
         | Crossref | GoogleScholarGoogle Scholar | 11196814PubMed |

[60]  C. L. Linfoot, P. Richardson, T. E. Hewat, O. Moudam, M. M. Forde, A. Collins, F. White, N. Robertson, Dalton Trans. 2010, 39, 8945.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFygtbfI&md5=37ea6caa6133235cfca3e5a49d5626b6CAS | 20859569PubMed |

[61]  G. F. Manbeck, W. W. Brennessel, R. Eisenberg, Inorg. Chem. 2011, 50, 3431.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1SjsLk%3D&md5=ebe1c0d957421a4b735497829e550f3fCAS | 21417454PubMed |

[62]  J. Huang, O. Buyukcakir, M. W. Mara, A. Coskun, N. M. Dimitrijevic, G. Barin, O. Kokhan, A. B. Stickrath, R. Ruppert, D. M. Tiede, J. F. Stoddart, J.-P. Sauvage, L. X. Chen, Angew. Chem. Int. Ed. 2012, 51, 12711.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1GgsLzF&md5=7c7a318a2b81d36705d1b9001b2ad2b1CAS |

[63]  P. Papanikolaou, J. Mohanraj, A. Czapik, M. Gdaniec, G. Accorsi, P. Akrivos, Dalton Trans. 2013, 42, 3357.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitlWltbw%3D&md5=96b1c7771444f43308d352467505839eCAS | 23233125PubMed |

[64]  Z.-F. Yao, X. Gan, W.-F. Fu, J. Coord. Chem. 2009, 62, 1817.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsVGhsb8%3D&md5=6bfd4c4c0eba16eb600f1c883357c40eCAS |