Tailoring Substrate Hydrophilicity Using Grafted Polypeptide Nanocoatings*
Steven Harris Wibowo A , Adrian Sulistio A , Edgar H. H. Wong A , Anton Blencowe A B and Greg G. Qiao A CA Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Melbourne, Vic. 3010, Australia.
B Present address: Mawson Institute, Division of Information Technology, Engineering and the Environment, University of South Australia, Mawson Lakes, SA 5095, Australia.
C Corresponding author. Email: gregghq@unimelb.edu.au
Australian Journal of Chemistry 67(4) 598-602 https://doi.org/10.1071/CH13519
Submitted: 27 September 2013 Accepted: 18 December 2013 Published: 17 February 2014
Abstract
Peptide nanocoatings with tailored surface-wetting properties were formed on a range of organic (cellulose and cotton) and inorganic (glass) substrates via surface-initiated ring-opening polymerization of amino acid N-carboxyanhydride derivatives. The film thickness, surface roughness, and wettability can be tuned by controlling the polymerization time and the type of N-carboxyanhydride derivative used (i.e. lysine or valine). Whereas poly(l-lysine) coatings are hydrophilic, poly(l-valine) coatings exhibit water-repellent properties. The functional polypeptide nanocoatings can potentially be applied to waterproof woven fabrics, macromolecular separation technologies, biodiagnostic sensors, and sustained drug-release wound dressings.
References
[1] J. Wang, M. I. Gibson, R. Barbey, S.-J. Xiao, H.-A. Klok, Macromol. Rapid Commun. 2009, 30, 845.| Crossref | GoogleScholarGoogle Scholar | 21706667PubMed |
[2] V. A. Ganesh, H. K. Raut, A. S. Nair, S. Ramakrishna, J. Mater. Chem. 2011, 21, 16304.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12gs7rK&md5=7634a7d84f658c619c23dc7abb75b113CAS |
[3] A. C. Engler, A. Shukla, S. Puranam, H. G. Buss, N. Jreige, P. T. Hammond, Biomacromolecules 2011, 12, 1666.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVGjtr8%3D&md5=7a8aaeac34a377d68f741bf05a247441CAS | 21443181PubMed |
[4] B. B. Hsu, S. Y. Wong, P. T. Hammond, J. Chen, A. M. Klibanov, Proc. Natl. Acad. Sci. USA 2011, 108, 61.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXms1GrtA%3D%3D&md5=ee65955e0639b26ab8e18269ba41c2cfCAS | 21173278PubMed |
[5] S. Y. Wong, Q. Li, J. Veselinovic, B.-S. Kim, A. M. Klibanov, P. T. Hammond, Biomaterials 2010, 31, 4079.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFKisrg%3D&md5=c7ea3695e7876c68a2107e864adede54CAS | 20163855PubMed |
[6] T. Saitoh, A. Sekino, M. Hiraide, Anal. Chim. Acta 2005, 536, 179.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtl2mtL0%3D&md5=18ec662e5e5ef4a5f34f067998e1fbaaCAS |
[7] Z. Li, X. Wang, G. Wen, S. Shuang, C. Dong, M. C. Paau, M. M. F. Choi, Biosens. Bioelectron. 2011, 26, 4619.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsl2itr8%3D&md5=234b7667e2b63b34be2fcfc54a1a1717CAS | 21612909PubMed |
[8] C. R. Crick, I. P. Parkin, Chemistry 2010, 16, 3568.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjslGrs7w%3D&md5=3af3a31955c0a366d31c0d2575c161b0CAS | 20209527PubMed |
[9] T. Sun, L. Feng, X. Gao, L. Jiang, Acc. Chem. Res. 2005, 38, 644.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkt1aju7k%3D&md5=14b4720706560215b58bfb6bb78e224aCAS | 16104687PubMed |
[10] P. Li, J. Biomed. Mater. Res. A 2003, 66A, 79.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslWns78%3D&md5=482787e27303abac9b215314821ba9c3CAS |
[11] J. F. Quinn, A. P. R. Johnston, G. K. Such, A. N. Zelikin, F. Caruso, Chem. Soc. Rev. 2007, 36, 707.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslCltLw%3D&md5=fb253feca5af0ca77937275f8729dcd2CAS | 17471396PubMed |
[12] A. N. Zelikin, A. L. Becker, A. P. R. Johnston, K. L. Wark, F. Turatti, F. Caruso, ACS Nano 2007, 1, 63.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptVejtr0%3D&md5=73abe5c5532871e9236ac17dcf341138CAS | 19203131PubMed |
[13] I. B. Rietveld, K. Kobayashi, H. Yamada, K. Matsushige, Soft Matter 2009, 5, 593.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1yjtLo%3D&md5=676961527cd8f18e731f496d915b6237CAS |
[14] H. Liu, S. Szunerits, M. Pisarek, W. Xu, R. Boukherroub, ACS Appl. Mater. Interfaces 2009, 1, 2086.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2mtLfL&md5=c972c45ee8ac0ceebd3025367bdd6c5dCAS | 20355837PubMed |
[15] A. L. Becker, A. P. R. Johnston, F. Caruso, Small 2010, 6, 1836.
| 1:CAS:528:DC%2BC3cXhtFKksLnE&md5=6e108ae38f6b4412288f717487a5d74bCAS | 20715072PubMed |
[16] F. Caruso, H. Möhwald, J. Am. Chem. Soc. 1999, 121, 6039.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjslWmtLo%3D&md5=844e590509a08e60313f4c9f67b638bcCAS |
[17] C. J. Ochs, T. Hong, G. K. Such, J. Cui, A. Postma, F. Caruso, Chem. Mater. 2011, 23, 3141.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXns1Kgur8%3D&md5=76361947333f2c446bdb7638f0a4e80fCAS |
[18] Y. Min, P. T. Hammond, Chem. Mater. 2011, 23, 5349.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFKhu7nO&md5=d035efbb05ed40a92bffa98ba8d3b21eCAS |
[19] A. Shukla, K. E. Fleming, H. F. Chuang, T. M. Chau, C. R. Loose, G. N. Stephanopoulos, P. T. Hammond, Biomaterials 2010, 31, 2348.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsV2ksg%3D%3D&md5=bda29970872abf4c310dfb24649fc7c0CAS | 20004967PubMed |
[20] F. Audouin, M. Fox, R. Larragy, P. Clarke, J. Huang, B. O’Connor, A. Heise, Macromolecules 2012, 45, 6127.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVCmtLnI&md5=964e57e503fb78d7d94b19e139f2e04aCAS |
[21] T. Borase, M. Iacono, S. I. Ali, P. D. Thornton, A. Heise, Polymer Chemistry 2012, 3, 1267.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvV2nt7o%3D&md5=f38cd9479381bba50cbbf022b89124b6CAS |
[22] G. Marcelo, A. Munoz-Bonilla, J. Rodriguez-Hernandez, M. Fernandez-Garcia, Polymer Chemistry 2013, 4, 558.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtl2ruw%3D%3D&md5=f1c8fbb35c1b3a734bb5a2b63da5c9feCAS |
[23] A. Heise, H. Menzel, H. Yim, M. D. Foster, R. H. Wieringa, A. J. Schouten, V. Erb, M. Stamm, Langmuir 1997, 13, 723.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtFeisbs%3D&md5=ca62798891238af79ebf98f4c70700deCAS |
[24] T. Jaworek, D. Neher, G. Wegner, R. H. Wieringa, A. J. Schouten, Science 1998, 279, 57.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivFymtA%3D%3D&md5=76c6f4617265181f7c7a11da9a1fe7b3CAS | 9417021PubMed |
[25] S. H. Wibowo, E. H. H. Wong, A. Sulistio, S. N. Guntari, A. Blencowe, F. Caruso, G. G. Qiao, Adv. Mater. 2013, 25, 4619.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosVCjs74%3D&md5=5008bfe97353671b1eabcd806e6c0223CAS | 23722350PubMed |
[26] N. H. Lee, L. M. Christensen, C. W. Frank, Langmuir 2003, 19, 3525.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhslSks70%3D&md5=6a027e256e089265921c84f5a261b2acCAS |
[27] Y.-C. Chang, C. W. Frank, Langmuir 1998, 14, 326.
| Crossref | GoogleScholarGoogle Scholar |
[28] S. N. Guntari, A. C. H. Khin, E. H. H. Wong, T. K. Goh, A. Blencowe, F. Caruso, G. G. Qiao, Adv. Funct. Mater. 2013, 23, 5159.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvVOjtr0%3D&md5=751444becab89993f3e779d600493590CAS |
[29] M. Nosonovsky, B. Bhushan, Curr. Opin. Colloid Interface Sci. 2009, 14, 270.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFWjsLw%3D&md5=e2b4387860ab9d616e8fb58ec4ed049aCAS |