Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

Thermal and Photocatalytic Production of Hydrogen Peroxide and its Use in Hydrogen Peroxide Fuel Cells

Shunichi Fukuzumi A B C and Yusuke Yamada A
+ Author Affiliations
- Author Affiliations

A Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan.

B Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea.

C Corresponding author. Email: fukuzumi@chem.eng.osaka-u.ac.jp




Shunichi Fukuzumi obtained his Ph.D. degree in applied chemistry from the Tokyo Institute of Technology in 1978. He has been a full professor at Osaka University since 1994, and is a special distinguished professor at Osaka University and the director of an ALCA (Advanced Low Carbon Technology Research and Development) project.



Yusuke Yamada obtained his Ph.D. degree in macromolecular science from Osaka University in 1998. He was working as a researcher and senior researcher at Osaka National Research Institute (currently AIST) from 1998 to 2009. From 2007 to 2008, he was a visiting scholar at University of California, Berkeley. Currently, he is an associate professor of Osaka University.

Australian Journal of Chemistry 67(3) 354-364 https://doi.org/10.1071/CH13436
Submitted: 21 August 2013  Accepted: 14 September 2013   Published: 30 October 2013

Abstract

This mini review describes our recent developments on the thermal and photocatalytic production of hydrogen peroxide and its use in hydrogen peroxide fuel cells. Selective two-electron reduction of dioxygen to hydrogen peroxide by one-electron reductants has been made possible by using appropriate metal complexes with an acid. Protonation of the ligands of the complexes facilitates the reduction of O2. The photocatalytic two-electron reduction of dioxygen to hydrogen peroxide also occurs using organic photocatalysts and oxalic acid as an electron source in buffer solutions. The control of the water content and pH of a reaction solution is significant for improving the catalytic activity and durability. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Utilisation of iron complexes as cathode materials are reviewed.


References

[1]  S. Dunn, in Encyclopedia of Energy (Ed. C. J. Cleaveland) 2004, Vol. 3, pp. 241–252 (Elsevier/Academic Press: San Diego, CA).

[2]  S. Fukuzumi, Y. Yamada, T. Suenobu, K. Ohkubo, H. Kotani, Energy. Environ. Sci. 2011, 4, 2754.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSrs7rJ&md5=6353ec85239f1a0806bed894c3e35383CAS |

[3]  M. Momirlan, T. N. Veziroglub, Int. J. Hydrogen Energy 2005, 30, 795.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtVyltrs%3D&md5=e795ff5edcd66ef405f8b35e9f838c01CAS |

[4]  S. Fukuzumi, Eur. J. Inorg. Chem. 2008, 1351.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFSht7o%3D&md5=8c9fb0b0c7ade7ebb6ee88426b6aa943CAS |

[5]  R. S. Disselkamp, Int. J. Hydrogen Energy 2010, 35, 1049.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlejt74%3D&md5=e14f77217c9d493bb39dcd32edb7ea01CAS |

[6]  R. S. Disselkamp, Energy Fuels 2008, 22, 2771.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvFOqsr4%3D&md5=eb0074b40c63134ecdbf71335f2155a2CAS |

[7]  S. Fukuzumi, Y. Yamada, K. D. Karlin, Electrochim. Acta 2012, 82, 493.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlCqtL%2FJ&md5=879870724415181192c6ae06dcfb7275CAS | 23457415PubMed |

[8]  C. J. Fritchie, R. K. McMullan, Acta Crystallogr. 1981, B37, 1086.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXitFyjtrg%3D&md5=f1c0cc6852233ea25ac6ea30422267f7CAS |

[9]  R. G. Pritchard, E. Islam, Acta Crystallogr. 2003, B59, 596.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVGnsbc%3D&md5=3b7f4c1a019322587c2c5b7227368ec6CAS |

[10]  E. Santacesaria, M. D. Serio, R. Velotti, U. Leone, Ind. Eng. Chem. Res. 1994, 33, 277.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXotVKmug%3D%3D&md5=e04b2fe7e287d98b75e9509ddaaea221CAS |

[11]  J. M. Campos-Martin, G. Blanco-Brieva, J. L. G. Fierro, Angew. Chem. Int. Ed. 2006, 45, 6962.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1antb%2FL&md5=a60bb342d4b5dd1fdfb9afdf9c3cdbbfCAS |

[12]  S. Fukuzumi, Prog. Inorg. Chem. 2009, 56, 49.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGhtLfF&md5=d784906d6fb6ff81d68540a2ffa273c8CAS |

[13]  S. Fukuzumi, Chem. Lett. 2008, 37, 808.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVeku7jP&md5=2757e9b0e202e63ac06aca80ba28a086CAS |

[14]  S. Fukuzumi, S. Mochizuki, T. Tanaka, Inorg. Chem. 1989, 28, 2459.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXktFejt7o%3D&md5=0b86a6556ada28184d22f2aea8e8f069CAS |

[15]  S. Fukuzumi, K. Okamoto, C. P. Gros, R. Guilard, J. Am. Chem. Soc. 2004, 126, 10441.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVeitb8%3D&md5=d7a1fbe8d8be0aa5af8566684f725e6eCAS | 15315460PubMed |

[16]  K. M. Kadish, J. Shen, L. Frémond, P. Chen, M. El Ojaimi, M. Chkounda, C. P. Gros, J.-M. Barbe, K. Ohkubo, S. Fukuzumi, R. Guilard, Inorg. Chem. 2008, 47, 6726.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvV2jsLc%3D&md5=b3556b65dbecbc64ccfdd31d4697e6c9CAS | 18582035PubMed |

[17]  K. M. Kadish, L. Frémond, J. Shen, P. Chen, K. Ohkubo, S. Fukuzumi, M. El Ojaimi, C. P. Gros, J.-M. Barbe, R. Guilard, Inorg. Chem. 2009, 48, 2571.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVCgtrg%3D&md5=d914885eb2664e79f205067d6544a3f7CAS | 19215120PubMed |

[18]  R. Chen, H. Li, D. Chu, G. Wang, J. Phys. Chem. C 2009, 113, 20689.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyht7nJ&md5=71e3522777fa27c01149be3cf471c8d1CAS |

[19]  J. H. Zagal, S. Griveau, J. F. Silva, T. Nyokong, F. Bedioui, Coord. Chem. Rev. 2010, 254, 2755.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12gu7%2FK&md5=0ba3d86a93e58a658094105eacbb4a1bCAS |

[20]  W. Li, A. Yu, D. C. Higgins, B. G. Llanos, Z. Chen, J. Am. Chem. Soc. 2010, 132, 17056.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWhtrzM&md5=d11bc82362c2d43d90c335444e411828CAS | 21070073PubMed |

[21]  A. A. Gewirth, M. S. Thorum, Inorg. Chem. 2010, 49, 3557.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1Gks7o%3D&md5=a817cae4e52c2ccb5b8a2b550058123fCAS | 20380457PubMed |

[22]  T. Honda, T. Kojima, S. Fukuzumi, J. Am. Chem. Soc. 2012, 134, 4196.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslamur0%3D&md5=5b3494189ce00072ca2ee014bd36e710CAS | 22299646PubMed |

[23]  K. Mase, K. Ohkubo, S. Fukuzumi, J. Am. Chem. Soc. 2013, 135, 2800.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtleltL8%3D&md5=ab654db0bc6a9f65a5c2508419694917CAS | 23343346PubMed |

[24]  Z. Halime, H. Kotani, S. Fukuzumi, K. D. Karlin, Proc. Natl. Acad. Sci. USA 2011, 108, 13990.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFaqt7%2FO&md5=448959d5627ab222d635d51da426870cCAS | 21808032PubMed |

[25]  D. Das, Y.-M. Lee, K. Ohkubo, W. Nam, K. D. Karlin, S. Fukuzumi, J. Am. Chem. Soc. 2013, 135, 2825.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1Ghtro%3D&md5=0b4e3824a4fd0c19861196b901afa0e0CAS | 23394287PubMed |

[26]  S. Fukuzumi, L. Tahsini, Y.-M. Lee, K. Ohkubo, W. Nam, K. D. Karlin, J. Am. Chem. Soc. 2012, 134, 7025.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVWnurw%3D&md5=bb361980d94aa99e9fda06003b5f0340CAS | 22462521PubMed |

[27]  S. Fukuzumi, H. Kotani, H. R. Lucas, K. Doi, T. Suenobu, R. L. Peterson, K. D. Karlin, J. Am. Chem. Soc. 2010, 132, 6874.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXls1yqs7g%3D&md5=5d93bfc430cd0a8b6277a32841bb00e1CAS | 20443560PubMed |

[28]  D. Das, Y.-M. Lee, K. Ohkubo, W. Nam, K. D. Karlin, S. Fukuzumi, J. Am. Chem. Soc. 2013, 135, 4018.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtVCmsrc%3D&md5=e86df171d301af343dfb6cbd151fe84fCAS | 23442145PubMed |

[29]  L. Tahsini, H. Kotani, Y.-M. Lee, J. Cho, W. Nam, K. D. Karlin, S. Fukuzumi, Chem.– Eur. J. 2012, 18, 1084.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFaltQ%3D%3D&md5=222ae00bc341f4124159689b4120d7d0CAS | 22237962PubMed |

[30]  S. Kakuda, R. L. Peterson, K. Ohkubo, K. D. Karlin, S. Fukuzumi, J. Am. Chem. Soc. 2013, 135, 6513.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktlertro%3D&md5=39371899f4f01357d17cd5a80b544bf5CAS | 23509853PubMed |

[31]  S. Fukuzumi, K. D. Karlin, Coord. Chem. Rev. 2013, 257, 187.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsV2ltb0%3D&md5=73dbff84f30da2ba952e650c3dc1ed04CAS | 23470920PubMed |

[32]  S. Fukuzumi, H. Kotani, K. Ohkubo, S. Ogo, N. V. Tkachenko, H. Lemmetyinen, J. Am. Chem. Soc. 2004, 126, 1600.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFajsw%3D%3D&md5=91736b8ba9ac187a1f0c7b46b2e5389bCAS | 14871068PubMed |

[33]  K. Ohkubo, H. Kotani, S. Fukuzumi, Chem. Commun. 2005, 4520.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvV2qt7s%3D&md5=ca88a3754d01d3d168a9ec1e01a39df4CAS |

[34]  S. Fukuzumi, H. Kotani, K. Ohkubo, Phys. Chem. Chem. Phys. 2008, 10, 5159.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvVahsrk%3D&md5=7d6df3abd0b9a4245a92dab559473ca5CAS | 18701967PubMed |

[35]  H. Kotani, K. Ohkubo, S. Fukuzumi, J. Am. Chem. Soc. 2004, 126, 15999.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpslentbg%3D&md5=d421245c4a428907d1a81835abd51a38CAS | 15584734PubMed |

[36]  H. Kotani, K. Ohkubo, S. Fukuzumi, Faraday Discuss. 2012, 155, 89.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1elsb0%3D&md5=ed0a63c986aa94c15838a0304c9e9fb9CAS | 22470969PubMed |

[37]  Y. Yamada, T. Miyahigashi, H. Kotani, K. Ohkubo, S. Fukuzumi, J. Am. Chem. Soc. 2011, 133, 16136.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFygu7vM&md5=dec14f83cbc5ca7e0f6e86f011a2f333CAS | 21875112PubMed |

[38]  H. Kotani, K. Ohkubo, S. Fukuzumi, Appl. Catal. B 2008, 77, 317.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlynsrrM&md5=196ec759aca0f10988cfb6bac03566b2CAS |

[39]  Y. Yamada, A. Nomura, T. Miyahigashi, S. Fukuzumi, Chem. Commun. 2012, 48, 8329.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFSls7rF&md5=ad77413f96148bf63edd8f6f1410556cCAS |

[40]  Y. Yamada, A. Nomura, T. Miyahigashi, K. Ohkubo, S. Fukuzumi, J. Phys. Chem. A 2013, 117, 3751.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXms1yht74%3D&md5=7941ebc5c664242659bb90cca35d8e85CAS |

[41]  Y. Yamada, A. Nomura, K. Ohkubo, T. Suenobu, S. Fukuzumi, Chem. Commun. 2013, 49, 5132.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsFaru78%3D&md5=2de75a37d79ed8ce5e3afbbbb819ae83CAS |

[42]  Standard Potentials in Aqueous Solution (Eds A. J. Bard, R. Parsons and J. Jordan), 1985 (Marcel Dekker: New York, NY).

[43]  F. Kanoufi, A. J. Bard, J. Phys. Chem. B 1999, 103, 10469.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntValtLo%3D&md5=eee499a5ead1dcbdd8c0192e56d53e97CAS |

[44]  S. Fukuzumi, K. Doi, T. Suenobu, K. Ohkubo, Y. Yamada, K. D. Karlin, Proc. Natl. Acad. Sci. USA 2012, 109, 15572.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFGisrvF&md5=188bb98e14be1ab4d63fb042183da43eCAS | 22543164PubMed |

[45]  L. Yi, Y. Song, X. Liu, X. Wang, G. Zou, P. He, W. Yi, Int. J. Hydrogen Energy 2011, 36, 15775.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlGltL7P&md5=b59579aaebca17d5470f5096efee8d63CAS |

[46]  D. Cao, Y. Gao, G. Wang, R. Miao, Y. Liu, Int. J. Hydrogen Energy 2010, 35, 807.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVGhuw%3D%3D&md5=dcca63655a84e8c8bced14d3bbf0ef83CAS |

[47]  W. Haijun, W. Cheng, L. Zhixiang, M. Zongqiang, Int. J. Hydrogen Energy 2010, 35, 2648.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  C. J. Patrissi, R. R. Bessette, Y. K. Kim, C. R. Schumacher, J. Electrochem. Soc. 2008, 155, B558.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsVKitbg%3D&md5=1a40b99969ac8f7333ed450923b3e5a5CAS |

[49]  O. Hasvold, N. J. Storkersen, S. Forseth, T. Lian, J. Power Sources 2006, 162, 935.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Wmt73F&md5=b270466a5a8e8c6e7b35c42698c6291fCAS |

[50]  W. Yang, S. Yang, W. Sun, G. Sun, Q. Xin, Electrochim. Acta 2006, 52, 9.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  T. Bewer, T. Beckmann, H. Dohle, J. Mergel, D. Stolten, J. Power Sources 2004, 125, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpslCksLo%3D&md5=75b97a4664a715140de3184d7a4297d4CAS |

[52]  D. N. Prater, J. J. Rusek, Appl. Energy 2003, 74, 135.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitVyrsrk%3D&md5=6e60a095841cd72d8f477efde3246da2CAS |

[53]  S. J. Lao, H. Y. Qin, L. Q. Ye, B. H. Liu, Z. P. Li, J. Power Sources 2010, 195, 4135.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsF2nu7o%3D&md5=998071aa015cee6c3b8c5de66cf505eaCAS |

[54]  B. Tartakovsky, S. R. Guiot, Biotechnol. Prog. 2006, 22, 241.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1KjsbjO&md5=c7054b22ffab9c6f6ec48178ee74fbb9CAS | 16454516PubMed |

[55]  S. Yamazaki, Z. Siroma, H. Senoh, T. Ioroi, N. Fujiwara, K. Yasuda, J. Power Sources 2008, 178, 20.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvFyls7w%3D&md5=6367ca909b159f53fcc18416583f3314CAS |

[56]  Y. Yamada, Y. Fukunishi, S. Yamazaki, S. Fukuzumi, Chem. Commun. 2010, 46, 7334.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Snt77I&md5=fdaaae1924b932044b35699244e627eaCAS |

[57]  Y. Yamada, S. Yoshida, T. Honda, S. Fukuzumi, Energy. Environ. Sci. 2011, 4, 2822.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSrs7vI&md5=42e20896b77a893d3be73b3da04a6cbaCAS |

[58]  Y. Yamada, M. Yoneda, S. Fukuzumi, Chem. – Eur. J. 2013, 19, 11733.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFCitL7O&md5=17910f2cc8edb52f4cc8af5b742df00dCAS | 23868499PubMed |

[59]  S. A. M. Shaegh, N.-T. Nguyen, S. M. M. Ehteshami, S. H. Chan, Energy. Environ. Sci. 2012, 5, 8225.
         | Crossref | GoogleScholarGoogle Scholar |

[60]  A. E. Sanli, A. Aytac, Int. J. Hydrogen Energy 2011, 36, 869.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1GjtbY%3D&md5=d4b471fde74e557a04d072fdc0ec15fbCAS |

[61]  F. Yang, K. Cheng, T. Wu, Y. Zhang, J. Yin, G. Wang, D. Cao, RSC Adv. 2013, 3, 5483.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFKlsbk%3D&md5=fde13f6a646fc1dac12f07a9b850e859CAS |

[62]  F. Yang, K. Cheng, X. Liu, S. Chang, J. Yin, C. Du, L. Du, G. Wang, D. Cao, J. Power Sources 2012, 217, 569.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Wlt7vP&md5=5d898946f92746222c75e888adaef7acCAS |

[63]  X. Jing, D. Cao, Y. Liu, G. Wang, J. Yin, Q. Wen, Y. Gao, J. Electroanal. Chem. 2011, 658, 46.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXms12gs7s%3D&md5=29e2de2b182ae5762757d45de3631a5aCAS |

[64]  T. Ruzgas, L. Gorton, J. Emneus, G. Markovarga, J. Electroanal. Chem. 1995, 391, 41.
         | Crossref | GoogleScholarGoogle Scholar |

[65]  C. Obinger, Arch. Biochem. Biophys. 2010, 500, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosV2itr0%3D&md5=c0bbde92cd627cc2a755e1540e0498e1CAS | 20599676PubMed |

[66]  P. Vidossich, M. Alfonso-Prieto, X. Carpena, I. Fita, P. C. Loewen, C. Rovira, Arch. Biochem. Biophys. 2010, 500, 37.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosV2itrk%3D&md5=7270cc00963431f93bf5ccd88445d8f6CAS | 20447375PubMed |