Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis of Anisotropic, Amphiphilic Grafted Multi-Star Polymers and Investigation of their Self-Assembling Characteristics

Anton Blencowe A , Jing Fung Tan A , Tor Kit Goh A , Kenneth N. Goldie B C , Xuehua Zhang A and Greg G. Qiao A D
+ Author Affiliations
- Author Affiliations

A Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Vic. 3010, Australia.

B Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Parkville, Vic. 3010, Australia.

C Current address: Centre for Cellular Imaging and Nano Analytics (C-CINA), Biozentrum, University of Basel, CH-4058 Basel, Switzerland.

D Corresponding author. Email: gregghq@unimelb.edu.au




Professor Greg Qiao received his B.Eng. in Polymer Engineering at Donghua University in 1982 and his Ph.D. at the University of Queensland in 1996 in synthetic organic chemistry. He then worked at the University of Melbourne, where he entered the field of synthetic polymer chemistry and engineering. He became a Lecturer in the Department of Chemical and Biomolecular Engineering in 2002, and was then promoted to a Senior Lecturer in 2004, Associate Professor and Reader in 2007, and full Professor in 2009. Since 2012, he has also been an Australian Research Council's professorial Future Fellow. His main research focuses are in synthesis of novel macromolecular architectures, polymeric membranes, functional polymers and biomaterials.

Australian Journal of Chemistry 67(1) 49-58 https://doi.org/10.1071/CH13357
Submitted: 7 July 2013  Accepted: 7 August 2013   Published: 16 September 2013

Abstract

Herein, we report the synthesis of amphiphilic multi-star architectures consisting of discrete poly(methacrylic acid)-based core cross-linked star polymers joined together by polystyrene-grafted linear connectors by a combination of atom transfer radical polymerisation of protected macroinitiator precursors and a copper-catalysed azide-alkyne cycloaddition grafting-to approach. The anisotropic multi-star architectures, which were obtained as individual di- and tri-star polymers with segregated hydrophobic and hydrophilic domains, undergo aggregation in apolar solvents resulting in the formation of large nanometre-scale vesicles. The self-assembling behaviour of these large amphiphilic multi-star polymers (Mw = 869–1097 kDa) was studied using dynamic light scattering, transmission electron microscopy, and atomic force microscopy.


References

[1]  C. Cai, L. Wang, J. Lin, Chem. Commun. 2011, 47, 11189.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1GhurjE&md5=1fa1c77c3cd6a625576e519a6be3dc0bCAS |

[2]  (a) K. Khanna, S. Varshney, A. Kakkar, Polym. Chem. 2010, 1, 1171.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2msLrM&md5=2d0d01d81614b00c022c89b9c46a351aCAS |
      (b) Z. Ge, S. Liu, Macromol. Rapid Commun. 2009, 30, 1523.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) B. M. Rosen, C. J. Wilson, D. A. Wilson, M. Peterca, M. R. Imam, V. Percec, Chem. Rev. 2009, 109, 6275.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtleksb7N&md5=ef3eac02f59fd40fd3e4811fbf0e8b38CAS | 19877614PubMed |
      (b) H. Frauenrath, Prog. Polym. Sci. 2005, 30, 325.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  C. Park, J. Lee, C. Kim, Chem. Commun. 2011, 47, 12042.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2ntbzN&md5=0c24c4979e5324bcead8b8f6c56e2e61CAS |

[5]  L. Zhao, Z. Lin, Soft Matter 2011, 7, 10520.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2ht7rM&md5=42eda166bc371703661a67bc007d55a6CAS |

[6]  (a) H. Shi, Y. Zhao, X. Dong, Y. Zhou, D. Wang, Chem. Soc. Rev. 2013, 42, 2075.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1GrsbY%3D&md5=cc613555e4b52df2d6048078312ba573CAS | 23243663PubMed |
      (b) K. Ishizu, S. Uchida, Prog. Polym. Sci. 1999, 24, 1439.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  J. Zhang, X. Li, X. Li, Prog. Polym. Sci. 2012, 37, 1130.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFajsLo%3D&md5=6940eeade911677be0955e10744e575fCAS |

[8]  Z. Li, E. Kesselman, Y. Talmon, M. A. Hillmyer, T. P. Lodge, Science 2004, 306, 98.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFChtbY%3D&md5=5ea71755ad3b03e9610a802deb78da86CAS | 15459387PubMed |

[9]  T. P. Lodge, A. Rasdal, Z. Li, M. A. Hillmyer, J. Am. Chem. Soc. 2005, 127, 17608.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Ckur3O&md5=3e0cbef89bb4ddfea8ae4506e9d4a5efCAS | 16351082PubMed |

[10]  R. Erhardt, M. Zhang, A. Böker, H. Zettl, C. Abetz, P. Frederik, G. Krausch, V. Abetz, A. H. E. Müller, J. Am. Chem. Soc. 2003, 125, 3260.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtlSrs7c%3D&md5=2b70be2506422b64f72f5c996d46a198CAS | 12630881PubMed |

[11]  S. Houli, H. Iatrou, N. Hadjichristidis, D. Vlassopoulou, Macromolecules 2002, 35, 6592.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltFGit7g%3D&md5=ced8efa73c6025c22ccaf25cfadde7e2CAS |

[12]  (a) A. Li, Z. Li, S. Zhang, G. Sun, D. M. Policarpio, K. L. Wooley, ACS Macro Lett. 2012, 1, 241.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptFyh&md5=673b2fe594b0ada98d988350cc6ffde5CAS |
      (b) M. Rajan, P. V. Velthem, M. Zhang, D. Cho, T. Chang, U. S. Agarwal, C. Bailly, K. E. George, P. J. Lemstra, Macromolecules 2007, 40, 3080.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. Dimitrov, P. Iyer, R. Bharadwaj, P. Mallya, T. E. Hogen-Esch, Macromolecules 2009, 42, 6873.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. Ohno, K. Matyjaszewski, J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 5454.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) S.-M. Shau, C.-C. Chang, C.-H. Lo, Y.-C. Chen, T.-Y. Juang, S. A. Dai, R.-H. Lee, R.-J. Jeng, ACS Appl. Mater. Interfaces 2012, 4, 1897.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xks1Citbk%3D&md5=d227ef9b6f32454c8e1e61b07f19e158CAS | 22452447PubMed |
      (b) Z. Ge, D. Chen, J. Zhang, J. Rao, J. Yin, D. Wang, X. Wan, W. Shi, S. Liu, J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 1432.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) T. Emrick, W. Hayes, J. M. J. Fréchet, J. Polym. Sci, Part. A: Polym. Chem. 1999, 37, 3748.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) B.-K. Cho, A. Jain, S. M. Grunerb, U. Wiesner, Chem. Commun. 2005, 2143.

[14]  S. G. An, C. G. Cho, Polym. Bull. 2004, 51, 255.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvFOisQ%3D%3D&md5=4fd9a3518b1d959250b615f3cacaa28bCAS |

[15]  F. J. Stadler, M. Rajan, U. S. Agarwal, C.-Y. Liu, K. E. George, P. J. Lemstra, C. Bailly, Rheol. Acta 2011, 50, 491.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVWjt74%3D&md5=f4dae655e140bb0ebed96ce8c277f8d7CAS |

[16]  (a) W. Zhang, J. Yuan, S. Weiss, X. Ye, C. Li, A. H. E. Müller, Macromolecules 2011, 44, 6891.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWht73J&md5=5340027c02ca5c968a8bd2e32aeec5feCAS |
      (b) W. Xiong, H. Wang, Y. Han, Soft Matter 2011, 7, 8516.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  (a) G. Velis, N. Hadjichristidis, Macromolecules 1999, 32, 534.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotFChsLY%3D&md5=e026451f23b100f8930da1033807a132CAS |
      (b) D. Uhrig, J. W. Mays, Macromolecules 2002, 35, 7182.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) T. Higashihara, R. Faust, K. Inoue, A. Hirao, Macromolecules 2008, 41, 5616.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  F. A. Plamper, S. Reinicke, M. Elomaa, H. Schmalz, H. Tenhu, Macromolecules 2010, 43, 2190.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVyisrw%3D&md5=5a994d566f4937baaa98ef46bdcada59CAS |

[19]  T. He, D. J. Adams, M. F. Butler, C. T. Yeoh, A. I. Cooper, S. P. Rannard, Angew. Chem. Int. Ed. 2007, 46, 9243.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitFWhtw%3D%3D&md5=0ffa0b9b749af043915e84f60b314d97CAS |

[20]  T. He, D. J. Adams, M. F. Butler, A. I. Cooper, J. Am. Chem. Soc. 2009, 131, 1495.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVOksg%3D%3D&md5=2b6154a7cdf6ab24543781d00da93b9aCAS | 19133746PubMed |

[21]  J. F. Tan, A. Blencowe, T. K. Goh, I. T. M. Dela Cruz, G. G. Qiao, Macromolecules 2009, 42, 4622.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVCis70%3D&md5=c8da7053da75a53c41b095cf3b079104CAS |

[22]  A. Blencowe, J. F. Tan, T. K. Goh, G. G. Qiao, Polymer 2009, 50, 5.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksFyjsA%3D%3D&md5=53f02dd19a86b1050689bd614ff7fe98CAS |

[23]  Calculation of the f was based upon an arm to connector ratio of 13 : 1 (as determined by 1H NMR spectroscopy), an initial MI to cross-linker (EGDMA) molar ratio of 1 : 15 and 100 % cross-linker (EGDMA) conversion during multi-star formation. Therefore, for every star arm (Mw = 11.8 kDa), there is a contribution towards the core from the cross-linked EDGMA (Mw = 3 kDa).

[24]  H. Gao, K. Matyjaszewski, J. Am. Chem. Soc. 2007, 129, 6633.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslaqtbs%3D&md5=e60d37896d66c1e857972c725bd2a82bCAS | 17465551PubMed |

[25]  J. M. Ren, J. T. Wiltshire, A. Blencowe, G. G. Qiao, Macromolecules 2011, 44, 3189.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1Wgurg%3D&md5=0d3975f2dbbd59df01e425e86744f73dCAS |

[26]  (a) P. J. Flory, J. E. Osterheld, J. Phys. Chem. 1954, 58, 653.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXnsFOjtA%3D%3D&md5=d716ffeee60f05047304bb70a42c2916CAS |
      (b) H. Shen, A. Eisenberg, J. Phys. Chem. B 1999, 103, 9473.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  D. Voulgaris, C. Tsitsilianis, Macromol. Chem. Phys. 2001, 202, 3284.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFKktg%3D%3D&md5=068fb7771abca95bae190e1419a94f7bCAS |

[28]  (a) A. Sulistio, A. Blencowe, J. Wang, G. Bryant, X. Zhang, G. G. Qiao, Macromol. Biosci. 2012, 12, 1220.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVWhu73E&md5=eb1a20c0635d0b087e2ae7ca44d726e7CAS | 22807238PubMed |
      (b) L. Jiang, Y. Peng, Y. Yan, J. Huang, Soft Matter 2011, 7, 1726.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  H. Huang, B. Chung, J. Juan, H.-W. Park, T. Chang, Angew. Chem. Int. Ed. 2009, 48, 4594.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntVGqtrc%3D&md5=4ab54cfad7ea3b6311a1d7f9b84d31c7CAS |

[30]  J. T. Wiltshire, G. G. Qiao, J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 1485.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1aisrs%3D&md5=36ece37462647125369fc0fc16be11bcCAS |