Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Unusual Potassium-η2-Aromatic Interactions in the Crystal Structure of the Diphenylarsenide Transfer Reagent, KAsPh2·2(1,4-Dioxane)

Michael C. Adams A , George A. Koutsantonis A C , Brian W. Skelton A B and Allan H. White A
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Biochemistry, M310, The University of Western Australia, Crawley, WA 6009, Australia.

B Current address: Centre for Microscopy, Characterisation and Analysis, M010, The University of Western Australia, Crawley, WA 6009, Australia.

C Corresponding author. Email: george.koutsantonis@uwa.edu.au

Australian Journal of Chemistry 66(10) 1260-1263 https://doi.org/10.1071/CH13314
Submitted: 19 June 2013  Accepted: 23 June 2013   Published: 7 August 2013

Abstract

In attempting the metallation of 1,2-bis(diphenylarsino)ethane, the title compound KAsPh2·2(1,4-dioxane) was obtained and characterised with a single crystal X-ray structure determination. Like the sodium counterpart, which is a monosolvate, NaAsPh2·1,4-dioxane, the complex may be considered as a two-dimensional polymer, the potassium atoms being linked by bridging 1,4-dioxane units, the oxygen atoms of which form a quasi-square planar array about the potassium atom (K–O 2.676–2.839(3) Å). Unlike the sodium complex, in which arsenide bridging is an intrinsic motif in the construction of the polymer, the K⋯As distance here is long (3.4662(10) Å), with the anion being terminal/monodentate, and counterposed in what may be considered a quasi-octahedral coordination sphere, by a trans-approach to two atoms of a neighbouring aromatic ring (K⋯C(ar) 3.361, 3.416(4) Å), extending the polymer in the third dimension.


References

[1]  (a) K. Izod, Adv. Inorg. Chem. 2000, 50, 33.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksVKktbY%3D&md5=218cf94e4aefc837a270eb09e084a1e7CAS |
      (b) B. D. Ellis, C. L. B. Macdonald, Coord. Chem. Rev. 2007, 251, 936.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  J. W. L. Martin, J. A. L. Palmer, S. B. Wild, Inorg. Chem. 1984, 23, 2664.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXkvVaqtrk%3D&md5=de0da1c8600a89d7a89bd1874edf232dCAS |

[3]  P. Brooks, D. C. Craig, M. J. Gallagher, A. D. Rae, A. Sarroff, J. Organomet. Chem. 1987, 323, C1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhtlWqs7g%3D&md5=3ab9ca3e2b996c4aa78dfd379d3a7e1fCAS |

[4]  A. Tzschach, W. Lange, Chem. Ber. 1962, 95, 1360.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XktlKntr8%3D&md5=327bf857ec7cf95b9365a321791a2ab4CAS |

[5]  A. Tzschach, G. Pacholke, Chem. Ber. 1964, 97, 419.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXlt1ymsA%3D%3D&md5=9780daee784f63f082ac4df0ff920f7bCAS |

[6]  (a) H. Hope, M. M. Olmstead, P. P. Power, X. Xu, J. Am. Chem. Soc. 1984, 106, 819.(CCDC: CEVNAS (E = P); CEVMUL (E = As)); despite the similar use of a (larger) crown ether and potassium, in the example of (b)
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmvVCjuw%3D%3D&md5=1e5b6959f7c9d5338465a759f647d5c4CAS |
      (b) F. Dornhaus, M. Bolte, H.-W. Lerner, M. Wagner, Eur. J. Inorg. Chem. 2006, 1777.(CCDC: YEHLON (K-P 3.267, 3.347(1) Å), the potassium atom here is probably more correctly considered coordinated and less naked than in CEVNAS[6a])
         | Crossref | GoogleScholarGoogle Scholar |

[7]  R. A. Bartlett, H. V. R. Dias, H. Hope, B. D. Murray, M. M. Olmstead, P. P. Power, J. Am. Chem. Soc. 1986, 108, 6921.(CCDC: DUWZEA (crown-4 : SbPh2 complex), also DUWZAW (LiAsPh2 : Et2O (1 : 2)) and DUWYUP (LiAsPh2 : 1,4-dioxane (1 : 3))
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XlvFWhu7w%3D&md5=0f93a434079b1967a15c31ce33d80b5dCAS |

[8]  (a) (Monoclinic polymorph) J. J. Daly, J. Chem. Soc. 1964, 3799.(CCDC: PTRPHE, ‘283–303 K’, P–C 1.822(5)–1.831(5), 1.828 Å; C–P–C 102.1–103.6(2), 103.3°)
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXkvVShs7c%3D&md5=008f3d5c6b6e76aa263d4c2c6a70adebCAS |
      (b) B. J. Dunne, A. G. Orpen, Acta Crystallogr. Sect. C 1991, 47, 345.(CCDC: PTRPHE01, 200 K, P–C 1.828–1.834(2), 1.831 Å; C–P–C 101.7–103.3(1), 102.8°).
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. N. Chekhlov, Kristallografiya 1993, 38, 79.(CCDC: PTRPHE02, ‘283–303 K’; P–C 1.825(3)–1.8278(10), 1.827 Å, C–P–C 102.03(7)–103.32(12), 102.8°)
      (d) J. Bruckmann, C. Kruger, F. Lutz, Z Naturforsch. B 1995, 50, 351.(PTRPHE03, 100 K, P–C 1.8270(12)–1.832(2), 1.830 Å, C–P–C 101.66(8)–103.44(7), 102.4°)
      (e) H. Kooijman, A. L. Spek, K. J. C. van Bommel, W. Verboom, D. N. Reinhoudt, Acta Crystallogr. Sect. C 1998, 54, 1695.(CCDC: PTRPHE04, 150 K; P–C 1.828–1.839(3), 1.833 Å; C–P–C 101.03–102.57(14), 102.1°)
         | Crossref | GoogleScholarGoogle Scholar |
      (f) B. Ziemer, A. Rabis, H.-U. Steinberger, Acta Crystallogr. Sect. C 2000, 56, e58.(CCDC: PTRPHE05, 180(2) K; P–C 1.824–1.837(2), 1.830 Å; C–P–C 101.16–102.59(10), 102.25°)
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) J. Wetzel, Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem. 1942, 104, 305.(CCDC: ZZZEIG, ‘283–303 K’; probable cell and space group only)
         | 1:CAS:528:DyaH3sXjtlSlsg%3D%3D&md5=f8eca9306a9b85e58631a41313ba33caCAS |
      (b) A. N. Sobolev, V. K. Belsky, N. Yu. Chernikova, F. Yu. Akhmadulina, J. Organomet. Chem. 1983, 244, 129.(CCDC: ZZZEIG01, ‘283–303 K’; As–C 1.935–1.966(7), 1.96 Å; C–As–C 99.2–100.8(3), 100°)
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Mazhar-ul-Haque, H. A. Tayim, J. Ahmed, W. Horne, J. Cryst. Spectr. Res. 1985, 15, 561.(CCDC: ZZZEIG02, ‘283–303 K’; As–C 1.922–1.961(11), 1.95 Å; C–As–C 99.7°)
         | Crossref | GoogleScholarGoogle Scholar |

[10]     (a) (Triclinic polymorph; two molecules in the asymmetric unit) see Ref. [9a] (CCDC: ZZZEHA, ‘283–303 K’; probable cell and space group only).
      (b) E. A. Adams, J. W. Kolis, W. T. Pennington, Acta Crystallogr. Sect. C 1990, 46, 917.(CCDC: ZZZEHA01, 204 K; Sb–C 2.143–2.169(6), 2.155 Å; C–Sb–C 95.1–98.0(3), 96.5°)
         | Crossref | GoogleScholarGoogle Scholar |
      (c) (Monoclinic polymorph) Effendy, W. J. Grigsby, R. D. Hart, C. L. Raston, B. W. Skelton, A. H. White, Aust. J. Chem. 1997, 50, 675.(CCDC: ZZZEHA02, 295 K; Sb–C 2.140–2.155(7), 2.146 Å, C–Sb–C 95.5–97.4(3), 96.3°)
         | Crossref | GoogleScholarGoogle Scholar |

[11]  R. A. Bartlett, M. M. Olmstead, P. P. Power, Inorg. Chem. 1986, 25, 1243.(CCDC: DOXDUP (S = Et2O); DOXFAX (2S = 2THF))
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xhsl2jtrs%3D&md5=c198f4a3f45d223b728060f0bb4195caCAS |

[12]  G. Stieglitz, B. Neumüller, K. Dehnicke, Z. Naturforsch. B 1993, 48, 156.(CCDC: LAFPIR (S = dme))
         | 1:CAS:528:DyaK3sXksV2ntbo%3D&md5=803e02255fe1aea11c08fd8f6b3f3bb7CAS |

[13]  A. Belforte, F. Calderazzo, A. Morvillo, G. Pelizzi, D. Vitali, Inorg. Chem. 1984, 23, 1504.(CCDC: CIPMIX)
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhvFajsrY%3D&md5=d6a36e78e3febeef2213d5ad25e939f8CAS |

[14]  M. C. Adams, G. A. Koutsantonis, B. W. Skelton, A. H. White, J. Chem. Soc., Dalton Trans. 1997, 3483.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntVyisLY%3D&md5=d5cc747b87d015a94a53363341d858e5CAS |

[15]  G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=c16dcfe329fce2375df65b1474a83185CAS | 18156677PubMed |