Concise Synthesis of Enantiomerically Pure (1′S,2′R)- and (1′R,2′S)-2S-Amino-3-(2′-aminomethyl-cyclopropyl)propionic Acid: Two E-Diastereoisomers of 4,5-Methano-l-lysine
Timothy M. Altamore A , Oanh T. K. Nguyen A , Quentin I. Churches B , Kate Cavanagh B , Xuan T. T. Nguyen B , Sandhya A. M. Duggan A , Guy Y. Krippner C and Peter J. Duggan B D EA School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
B CSIRO Materials Science and Engineering, Bag 10, Clayton South, Vic. 3169, Australia.
C Baker IDI Heart and Diabetes Institute, Melbourne, Vic. 8008, Australia.
D School of Chemical and Physical Sciences, Flinders University, Adelaide, SA 5042, Australia.
E Corresponding author. Email: peter.duggan@csiro.au
Australian Journal of Chemistry 66(9) 1105-1112 https://doi.org/10.1071/CH13309
Submitted: 14 June 2013 Accepted: 15 July 2013 Published: 14 August 2013
Abstract
A concise synthesis of both E-isomers of 2S-amino-3-(2′-aminomethyl-cyclopropyl)propionic acid, new methano-l-lysines, is described. The synthetic route includes nine steps from l-methionine, with a key step involving the cyclopropanation of an intermediate E-allylic alcohol. The resultant hydroxymethylcyclopropanes were readily separated and converted into the title α-amino acids. The stereochemistry around the cyclopropane rings was deduced by conducting the cyclopropanation in the presence of N,N,N′,N′-tetramethyl-d-tartaric acid diamide butylboronate, a chiral controller which is known to favour the production of S-hydroxymethyl cyclopropanes from allylic alcohols.
References
[1] I. V. Komarov, A. O. Grigorenko, A. V. Turov, V. P. Khilya, Russ. Chem. Rev. 2004, 73, 785.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVejsrrO&md5=9157fbb7aef95b1c08ce8524d1e15af0CAS |
[2] F. Brackmann, A. de Meijere, Chem. Rev. 2007, 107, 4493.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFOitLbJ&md5=42e16431d125234d578e2b19be1bf160CAS | 17944521PubMed |
[3] F. Brackmann, A. de Meijere, Chem. Rev. 2007, 107, 4538.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFOitbrJ&md5=76e89a8d6789d2c0cc2da5666410167dCAS | 17944522PubMed |
[4] A. Burger, R. T. Standridge, J. Med. Chem. 1963, 6, 221.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXntlakuw%3D%3D&md5=550a176d918ffa5010ceb545dabd5a33CAS | 14185971PubMed |
[5] M. Truong, F. Lecornué, A. Fadel, Tetrahedron Asymmetr. 2003, 14, 1063.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisleisbw%3D&md5=10b886697e30aaa114f11b9907e7dfccCAS |
[6] G. Costantino, K. Maltoni, M. Marinozzi, E. Camaioni, L. Prezeau, J.-P. Pin, R. Pellicciari, Bioorg. Med. Chem. 2001, 9, 221.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhs1artLs%3D&md5=d990e36f6091475524c1bea0d0186670CAS | 11249114PubMed |
[7] P. K. Mikhailiuk, S. Afonin, A. N. Chernega, E. B. Rusanov, M. O. Platonov, G. G. Dubinina, M. Berditsch, A. S. Ulrich, I. V. Komarov, Angew. Chem. Int. Ed. 2006, 45, 5659.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsVWhtro%3D&md5=9fe68ec08cbe94b68db028aa10dd3be0CAS |
[8] P. K. Mykhailiuk, N. M. Voievoda, I. V. Komarov, S. Afonin, A. S. Ulrich, J. Fluor. Chem. 2010, 131, 217.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGksbc%3D&md5=b0501e5425e51e8433b3433493abde2eCAS |
[9] R. Filosa, M. Marinozzi, G. Costantino, M. B. Hermit, C. Thomsen, R. Pellicciari, Bioorg. Med. Chem. 2006, 14, 3811.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvFWms7o%3D&md5=07805870a590ae11cd6eee667a76d3feCAS | 16460952PubMed |
[10] S. Pritz, M. Paetzel, G. Szeimies, M. Dathe, M. Bienert, Org. Biomol. Chem. 2007, 5, 1789.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFCjtLs%3D&md5=0bd219e125cf5d154fd914b098748954CAS | 17520148PubMed |
[11] R. Filosa, M. C. Fulco, M. Marinozzi, N. Giacche, A. Macchiarulo, A. Peduto, A. Massa, P. de Caprariis, C. Thomsen, C. T. Christoffersen, R. Pellicciari, Bioorg. Med. Chem. 2009, 17, 242.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFamtr7K&md5=a60fd3261adefb410a5f21c5308a08abCAS | 19042134PubMed |
[12] R. Pellicciari, G. Costantion, E. Giovagnoni, L. Mattoli, I. Brabet, J.-P. Pin, Bioorg. Med. Chem. Lett. 1998, 8, 1569.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkt1OgtLY%3D&md5=cc98cf8cddadfb28bda4b77e590f6382CAS | 9873392PubMed |
[13] Q. I. Churches, R. J. Mulder, J. M. White, J. Tsanaktsidis, P. J. Duggan, Aust. J. Chem. 2012, 65, 690.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptFCns7g%3D&md5=5fac4616d0cf5c647ace0ceaa6f8a645CAS |
[14] Y. Morimoto, M. Takaishi, T. Kinoshita, K. Sakaguchi, K. Shibata, Chem. Commun. 2002, 42.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntFegsQ%3D%3D&md5=bd95e2d4d2120bfa927488305edcecfaCAS |
[15] H. Yoshimura, K. Takegami, M. Doe, T. Yamashita, K. Shibata, K. Wakabayashi, K. Soga, S. Kamisaka, Phytochemistry 1999, 52, 25.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsVylsb8%3D&md5=767ae6cff53ea7dc87f86ed0be69ce24CAS |
[16] S. Hanessian, U. Reinhold, G. Gentile, Angew. Chem. Int. Ed. 1997, 36, 1881.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsVKjsrc%3D&md5=c744564088a7cf35a59264be517f2ba3CAS |
[17] A. Armstrong, J. N. Scutt, Org. Lett. 2003, 5, 2331.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvFWgur8%3D&md5=a93e972c4fce9bb048fb2fe8bdc354f5CAS | 12816441PubMed |
[18] A. Asai, A. Hasegawa, K. Ochiai, Y. Yamashita, T. Mizukami, J. Antibiot. 2000, 53, 81.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFeqsg%3D%3D&md5=71f0617e38f9ad979423fd378bfd06e5CAS | 10724015PubMed |
[19] D. D. Staas, K. L. Savage, V. L. Sherman, H. L. Shimp, T. A. Lyle, L. O. Tran, C. M. Wiscount, D. R. McMasters, P. E. J. Sanderson, P. D. Williams, B. J. Lucas, J. A. Krueger, S. D. Lewis, R. B. White, S. Yu, B. K. Wong, C. J. Kochansky, M. R. Anari, Y. Yan, J. P. Vacca, Bioorg. Med. Chem. 2006, 14, 6900.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFSksL8%3D&md5=6c5161b31724b54559400fa081175512CAS | 16870455PubMed |
[20] A. L. J. Beckwith, K. U. Ingold, in Rearrangements in Ground and Excited States (Ed. P. de Mayo) 1980, Ch. 1, pp. 227–233 (Academic Press: New York, NY).
[21] P. A. Frey, O. T. Magnusson, Chem. Rev. 2003, 103, 2129.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFGgu7s%3D&md5=021fa17d2f5c5e281869855903d62ad4CAS | 12797826PubMed |
[22] P. A. Frey, A. D. Hegeman, F. J. Ruzicka, Biochem. Mol. Biol. 2008, 43, 63.
| 1:CAS:528:DC%2BD1cXisFSqtLc%3D&md5=74a0cf239e889f232be8948947513a77CAS |
[23] J. E. Baldwin, A. Flinn, Tetrahedron Lett. 1987, 28, 3605.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXitVGjsbs%3D&md5=f0e12a6476a66e64b18e4645512f8d8dCAS |
[24] D. D. Keith, J. A. Tortora, K. Ineichen, W. Leimgruber, Tetrahedron 1975, 31, 2633.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XksVKhtQ%3D%3D&md5=50091b80d1f3fbf0639c301e84b8c429CAS |
[25] A. L. Gemal, J.-L. Luche, J. Am. Chem. Soc. 1981, 103, 5454.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXltlWksb8%3D&md5=f43ec49d7d5d4bbce67d78ff51ee64bcCAS |
[26] A. B. Charette, H. Juteau, J. Am. Chem. Soc. 1994, 116, 2651.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXis12lur0%3D&md5=9184a2bc9a1c39e32d5980a60f948620CAS |
[27] A. B. Charette, H. Juteau, H. Lebel, C. Molinaro, J. Am. Chem. Soc. 1998, 120, 11943.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFegs74%3D&md5=4164c5ca49a8ccc942f97cb164e4f618CAS |
[28] A. J. Ozinskas, G. A. Rosenthal, J. Org. Chem. 1986, 51, 5047.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXltl2h&md5=f928e24c93bbf0c863fc3272e08b80baCAS |