Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

Natural Product Synthesis via the Rhodium Carbenoid-Mediated Cyclization of α-Diazo Carbonyl Compounds

Albert Padwa A B , Bo Cheng A and Yan Zou A
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Emory University, Atlanta, Georgia, GA 30322, USA.

B Corresponding author. Email: chemap@emory.edu




Albert Padwa received both his B.A. and Ph.D. degrees from Columbia University. Following an NSF post-doctoral position at the University of Wisconsin, he was appointed as Assistant Professor of Chemistry at the Ohio State University in 1963. He moved to SUNY Buffalo in 1966 as Associate Professor and was promoted to Professor in 1969. Since 1979, he has been the William Patterson Timmie Professor of Chemistry at Emory University. As documented in over 700 publications, Professor Padwa's research interests are diverse and have encompassed heterocyclic chemistry, dipolar cycloadditions, alkaloid synthesis, tandem transformations, organometallic chemistry, and organic photochemistry. Among other awards, Professor Padwa has been the recipient of an Alfred P. Sloan Fellowship, a John S. Guggenheim Fellowship, and an ACS Arthur C. Cope Scholar Award. He has served as the Chairman of the Organic Division of the ACS and as President of the International Society of Heterocyclic Chemistry, and he is currently one of the associate editors of the Journal of Organic Chemistry.



Bo Cheng was born in Jilin province, China, and received her B.E. degree from Tianjin University and her M.S. degree from the University of Science and Technology of China. She obtained her Ph.D. in organic chemistry from Emory University in 2008 under the guidance of Professor Lanny S. Liebeskind. After graduation, she joined Professor Stephen F. Martin's laboratory at the University of Texas at Austin as a post-doctoral research fellow and worked on complex natural product synthesis. In 2011, she joined Professor Padwa's laboratory at Emory University where her research was focused on natural product synthesis via rhodium carbenoid mediated cyclization reactions. Currently, she is a post-doctoral research fellow at the California Institute for Biomedical Research in San Diego, California.



Yan Zou was born in Fujian province, China, and completed her undergraduate studies at the University of Science and Technology of China in 2004. She received her master's degree from Miami University in 2007 and was awarded her Ph.D. degree in organic chemistry by North Carolina State University in 2012 under the supervision of Professor Alexander Deiters. In August 2012, Dr Zou joined Professor Albert Padwa's group at Emory University as a post-doctoral fellow. Her research has been focused on alkaloid synthesis via the transition metal-catalyzed cyclization of α-diazo carbonyl compounds. Currently, she is working as a toxicologist with Castle Medical LLC in Smyrna, Georgia.

Australian Journal of Chemistry 67(3) 343-353 https://doi.org/10.1071/CH13307
Submitted: 14 June 2013  Accepted: 25 July 2013   Published: 20 August 2013

Abstract

The chemistry of metal carbene complexes has provided chemists with exceptionally fertile ground for designing and developing new stereoselective bond construction for application towards the synthesis of various natural products. In particular, the RhII-catalyzed reaction of 2-diazo-3-oxobutanoates bearing tethered π-bonds represents a synthetically useful protocol for the construction of a variety of novel polycyclic skeletons. The related RhII-catalyzed reaction of the 2-diazo-2-(1H-indol-2-yl)acetate system has recently been examined as a potential route towards scandine, a member of the melodinus family of alkaloids.


References

[1]  (a) G. Dake, Tetrahedron 2006, 62, 3467.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XislChsr8%3D&md5=04ff2ee8c831856b911fd06dd4c79fc0CAS |
      (b) M. A. Ciufolini, Il Farmaco 2005, 60, 627.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. Sinclair, R. A. Stockman, Nat. Prod. Rep. 2007, 24, 298.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) P. Schar, S. Cren, P. Renaud, Chimia 2006, 60, 131.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) R. Grigg, Chem. Soc. Rev. 1987, 16, 89.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) N. M. Hewlett, C. D. Hupp, J. J. Tepe, Synthesis 2009, 2825.
      (g) M. H. Osterhout, W. R. Nadler, A. Padwa, Synthesis 1994, 123.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) A. G. H. Wee, Curr. Org. Synth. 2006, 3, 499.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) A. W. M. Lee, W. H. Chan, H. K. Zhang, P. F. Xia, Curr. Org. Chem. 2003, 7, 573.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) P. N. Confalone, J. Heterocycl. Chem. 1990, 27, 31.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) A. de Meijere, S. I. Kozhushkov, A. F. Khlebnikov, Top. Curr. Chem. 2000, 207, 89.
         | Crossref | GoogleScholarGoogle Scholar |
      (l) A. Padwa, Chem. Soc. Rev. 2009, 38, 3072.
         | Crossref | GoogleScholarGoogle Scholar |
      (m) A. de Meijere, S. I. Kozhushkov, Eur. J. Org. Chem. 2000, 3809.
         | Crossref | GoogleScholarGoogle Scholar |
      (n) V. Nair, T. D. Suja, Tetrahedron 2007, 63, 12247.
         | Crossref | GoogleScholarGoogle Scholar |
      (o) I. Coldham, R. Hufton, Chem. Rev. 2005, 105, 2765.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  S. F. Martin, in The Alkaloids (Ed. A. Brossi) 1987, Vol. 30, pp. 251–377 (Academic Press: New York, NY).

[3]  U. Chiacchio, A. Padwa, G. Romeo, Curr. Org. Chem. 2009, 13, 422.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVSnt74%3D&md5=e85ef9ff453451bc59d0dd9c17ad495fCAS |

[4]  (a) L. F. Tietze, U. Beifuss, Angew. Chem. Int. Ed. 1993, 32, 131.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) K. C. Nicolaou, J. S. Chen, Chem. Soc. Rev. 2009, 38, 2993.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. C. Nicolaou, D. J. Edmonds, P. G. Bulger, Angew. Chem. Int. Ed. 2006, 45, 7134.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. K. Bur, A. Padwa, Adv. Heterocycl. Chem. 2007, 94, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  A. Padwa, S. K. Bur, Tetrahedron 2007, 63, 5341.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFKhsrg%3D&md5=3da127e09e9deaa946b32bd0b0495f7eCAS | 17940591PubMed |

[6]  T. L. Ho, Tandem Organic Reactions 1992 (John Wiley: New York, NY).

[7]     (a) Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products (Eds A. Padwa, W. H. Pearson) 2003 (John Wiley: New York, NY).
         (b) R. Huisgen, in 1,3-Dipolar Cycloaddition Chemistry (Ed. A. Padwa) 1984, Vol. 1, pp. 1–176 (John Wiley: New York, NY).

[8]     (a) D. P. Curran, Advances in Cycloaddition 1990 (JAI Press: Greenwich, CT).
      (b) R. R. Schmidt, Acc. Chem. Res. 1986, 19, 250.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. Waldmann, Synthesis 1994, 535.
         | Crossref | GoogleScholarGoogle Scholar |

[9]     (a) A. Padwa, A. M. Schoffstall, in Advances in Cycloaddition (Ed. D. Curran) 1990, pp. 269–298 (JAI Press: Greenwich, CT).
         (b) W. Carruthers, Cycloaddition Reactions in Organic Synthesis 1990, pp. 269–298 (Pergamon: Elmsford, NY).
      (c) D. C. S. Black, R. F. Cozier, V. C. Davis, Synthesis 1975, 205.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) K. A. Jørgensen, Angew. Chem. Int. Ed. 2000, 39, 3558.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) For some leading references, see: A. Padwa, Chem. Soc. Rev. 2009, 38, 3072.
         | 1:CAS:528:DC%2BD1MXht12ht73P&md5=4abc4aed87c55460286b2755eee0cb90CAS | 19847342PubMed |
      (b) A. J. M. Burrell, I. Coldham, Curr Org Synth 2010, 7, 312.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  A. Hassner, K. S. Murthy, A. Padwa, W. H. Bullock, P. D. Stull, J. Org. Chem. 1988, 53, 5063.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtFSktL8%3D&md5=db084c60996b5c866afc64437cfcc32fCAS |

[12]     (a) M. P. Doyle, in Comprehensive Organometallic Chemistry II (Ed. L. S. Hegedus) 1995, Vol. 12, Ch. 5.2, pp. 919–939 (Pergamon: New York, NY).
      (b) M. P. Doyle, Chem. Rev. 1986, 86, 919.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  T. Ye, M. A. McKervey, Chem. Rev. 1994, 94, 1091.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktVyhsbY%3D&md5=fdf98bdfc947ec9e2b870ab289e932abCAS |

[14]  (a) A. Padwa, S. F. Hornbuckle, Chem. Rev. 1991, 91, 263.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitVKitrY%3D&md5=ed910a10d7f422c8d168c8fc304b02c8CAS |
      (b) A. Padwa, K. E. Krumpe, Tetrahedron 1992, 48, 5385.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. Padwa, M. D. Weingarten, Chem. Rev. 1996, 96, 223.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  A. Padwa, E. A. Curtis, V. P. Sandanayaka, J. Org. Chem. 1997, 62, 1317.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhsVSls7c%3D&md5=26893d06afb495b9ac533d158308bb3cCAS |

[16]  W. G. Dauben, J. Dinges, T. C. Smith, J. Org. Chem. 1993, 58, 7635.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivF2js7w%3D&md5=f93c82fd1e4cc537d49c910c555e3680CAS |

[17]  H. Koyama, R. G. Ball, G. D. Berger, Tetrahedron Lett. 1994, 35, 9185.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXislahu74%3D&md5=6a7d7afe3627f4ab01dd954c3b480549CAS |

[18]  A. Padwa, Angew. Chem. Int. Ed. 1976, 15, 123.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  (a) A. Padwa, S. P. Carter, H. Nimmesgem, J. Org. Chem. 1986, 51, 1157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XitVOisrw%3D&md5=d2eed99cbbbb9232a334dc3dcce6fd26CAS |
      (b) A. Padwa, S. P. Carter, H. Nimmesgem, P. D. Stull, J. Am. Chem. Soc. 1988, 110, 2894.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. Padwa, G. E. Fryxell, L. Zhi, J. Org. Chem. 1988, 53, 2875.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  (a) A. Padwa, J. Boonsombat, P. Rashatasakhon, J. Willis, Org. Lett. 2005, 7, 3725.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVymurs%3D&md5=507f44d6714689dce6c9cb73bbc607b9CAS | 16092860PubMed |
      (b) A. Padwa, M. J. Chughtai, J. Boonsombat, P. Rashatasakhon, Tetrahedron 2008, 64, 4758.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  N. Uchiyama, F. Kiuchi, M. Ito, G. Honda, Y. Takeda, O. K. Khodzhimatov, O. A. Ashurmetov, J. Nat. Prod. 2003, 66, 128.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovVSnsbw%3D&md5=3ac70f25aa27cb278a007ac2f3f44b15CAS | 12542361PubMed |

[22]  (a) A. Padwa, Top. Curr. Chem. 1997, 189, 121.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkvFyhuro%3D&md5=1f29ea9bd6d7836f26c3ee1ab56b4765CAS |
         (b) M. P. Doyle, M. A. McKervey, T. Ye, Modern Catalytic Methods for Organic Synthesis with Diazo Compounds 1998 (John Wiley: New York, NY).

[23]  (a) M. P. Doyle, W. Hu, D. J. Timmons, Org. Lett. 2001, 3, 933.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsFKht70%3D&md5=d709d0dd5b9d1e7778ec2a4e8bf87ed7CAS | 11263919PubMed |
      (b) H. M. L. Davies, J. DeMeese, Tetrahedron Lett. 2001, 42, 6803.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Muthusamy, C. Gunanathan, M. Nethaji, Synlett 2004, 639.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  T. C. Bruice, U. K. Pandit, J. Am. Chem. Soc. 1960, 82, 5858.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXpvFWqsg%3D%3D&md5=c4f16a7791ca8001a3d71ee41c3eaeceCAS |

[25]  (a) M. E. Jung, J. Gervay, J. Am. Chem. Soc. 1991, 113, 224.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmtFentA%3D%3D&md5=852dff29cbd7d9f7c2a90b09bd084549CAS |
      (b) M. E. Jung, I. D. Triunovich, N. Lensen, Tetrahedron Lett. 1992, 33, 6719.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  M. C. McMills, L. Zhuang, D. L. Wright, W. Watt, Tetrahedron Lett. 1994, 35, 8311.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXit1SjtLw%3D&md5=5682290a62e05f195d75c3a5c210b890CAS |

[27]  P. A. Wender, H. Kogen, H. Y. Lee, J. D. Munger, R. S. Wilhelm, P. D. Williams, J. Am. Chem. Soc. 1989, 111, 8957.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXnslGi&md5=f0edc24787884ca0b708d0e63662d20fCAS |

[28]  (a) P. Chiu, B. Chen, K. F. Cheng, Org. Lett. 2001, 3, 1721.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjt1Sntrs%3D&md5=772c96b17bdf7a3ee0e5f90fe319beafCAS | 11405695PubMed |
      (b) R. Chen, Y. Y. Ko, M. S. M. Yuen, K. F. Cheng, P. Chiu, J. Org. Chem. 2003, 68, 4195.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. Chiu, Pure Appl. Chem. 2005, 77, 1183.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) P. Chiu, B. Chen, K. F. Cheng, Tetrahedron Lett. 1998, 39, 9229.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  B. N. Zhou, B. P. Ying, G. Q. Song, Z. H. Chen, J. Han, Y. F. Yan, Planta Med. 1983, 47, 35.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXitFars7s%3D&md5=827151334ca636fd2efef72090992b2dCAS | 17405089PubMed |

[30]  (a) D. M. Hodgson, F. Y. T. M. Pierard, P. A. Stupple, Chem. Soc. Rev. 2001, 30, 50.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkt1Ojuw%3D%3D&md5=31ac82b61bee2c0f8a934adf153fe2d5CAS |
      (b) G. Mehta, S. Muthusam, Tetrahedron 2002, 58, 9477.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  S. K. Lam, P. Chiu, Chem. – Eur. J. 2007, 13, 9589.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVahsLzK&md5=b6d8f8cc7b8410d08b0e4714ef9ce05dCAS | 17763492PubMed |

[32]  M. H. Osterhout, W. R. Nadler, A. Padwa, Synthesis 1994, 123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisVCksbs%3D&md5=15253c95e08948b45487e370691ff26aCAS |

[33]  M. P. Doyle, R. L. Dorow, J. W. Terpstra, R. A. Rodenhouse, J. Org. Chem. 1985, 50, 1663.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhvVCqu7o%3D&md5=95c6d3691abfcb28de4b856ba461d864CAS |

[34]  M. Sato, N. Kanuma, T. Kato, Chem. Pharm. Bull. 1982, 30, 1315.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XksFGktrs%3D&md5=f21f9ba3197b9ed49a22a7ee97dad6b2CAS |

[35]  M. Regitz, Chem. Ber. 1966, 99, 3128.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXhtFSisA%3D%3D&md5=834da2ade3df264e6a01f226292a9a70CAS |

[36]  (a) A. Padwa, D. L. Hertzog, R. L. Chinn, Tetrahedron Lett. 1989, 30, 4077.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhvFyht7c%3D&md5=0c9024e82c3937e7b6a27d046d1b73a5CAS |
      (b) A. Padwa, D. L. Hertzog, W. R. Nadler, M. H. Osterhout, A. T. Price, J. Org. Chem. 1994, 59, 1418.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  M. E. Maier, B. Schoffling, Chem. Ber. 1989, 122, 1081.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXkt1egs7Y%3D&md5=94885d6ba55dafb53ad94ca5658dd046CAS |

[38]  M. E. Maier, K. Evertz, Tetrahedron Lett. 1988, 29, 1677.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlslGmtw%3D%3D&md5=f6a60c89df31cc39d0f97c460e1a7683CAS |

[39]  J. P. Marino, M. H. Osterhout, A. Padwa, J. Org. Chem. 1995, 60, 2704.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlt1Sruro%3D&md5=a8649ea29bf12340960c1e2d79011ec8CAS |

[40]  (a) D. A. Dickman, C. H. Heathcock, J. Am. Chem. Soc. 1989, 111, 1528.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtFGitLw%3D&md5=515f53f25f29d58d5d190278dca69dbbCAS |
      (b) C. H. Heathcock, M. H. Norman, D. A. Dickman, J. Org. Chem. 1990, 55, 798.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  D. H. R. Barton, S. W. McCombie, J. Chem. Soc., Perkin Trans. 1 1975, 1574.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXls1CnsLk%3D&md5=d423eb69215ee9d11faf8368716b0e4cCAS |

[42]  A. Padwa, S. R. Harring, M. A. Semones, J. Org. Chem. 1998, 63, 44.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtlym&md5=68189056fecb381461ece7e5c54e3cf3CAS | 11674041PubMed |

[43]  M. D. Weingarten, M. Prein, A. T. Price, J. P. Snyder, A. Padwa, J. Org. Chem. 1997, 62, 2001.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitlWjtr0%3D&md5=6058581496e3619bdf2da0de472000c6CAS | 11671503PubMed |

[44]  (a) J. M. Mejia-Oneto, A. Padwa, Org. Lett. 2006, 8, 3275.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtVShsb0%3D&md5=c5a9f9ce9007a9163da5889b0ffcdf37CAS | 16836384PubMed |
      (b) J. M. Mejia-Oneto, A. Padwa, Helv. Chim. Acta 2008, 91, 285.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  (a) D. B. England, A. Padwa, Org. Lett. 2007, 9, 3249.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvFOlsLY%3D&md5=fb1b7cdf780c5b2a0a03b23d750183a4CAS | 17658832PubMed |
      (b) D. B. England, A. Padwa, J. Org. Chem. 2008, 73, 2792.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  M. Daudon, H. Mehri, M. M. Plat, E. W. Hagaman, F. M. Schell, E. Wenkert, J. Org. Chem. 1975, 40, 2838.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXls1Cnsrw%3D&md5=640adc04c0bc559ebd130b2f9baeb9ecCAS |

[47]  J. E. Saxton, in The Akaloids (Ed. G. A. Cordell) 1998, Vol. 51, pp. 2–197 (Academic Press: New York, NY).

[48]  (a) L. E. Overman, G. M. Robertson, A. J. Robichaud, J. Org. Chem. 1989, 54, 1236.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtlGmt7k%3D&md5=53abc9be063d8680c4ba222e7509bf9aCAS |
      (b) L. E. Overman, G. M. Robertson, A. J. Robichaud, J. Am. Chem. Soc. 1991, 113, 2598.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Hayashi, F. Inagaki, C. Mukai, Org. Lett. 2011, 13, 1778.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) H. Zhang, D. P. Curran, J. Am. Chem. Soc. 2011, 133, 10376.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) P. Selig, T. Bach, Angew. Chem. Int. Ed. 2008, 47, 5082.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) P. Selig, E. Herdtweck, T. Bach, Chem. – Eur. J. 2009, 15, 3509.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) G. Hugel, J. Levy, J. Org. Chem. 1986, 51, 1594.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) S. E. Denmark, J. J. Cottell, Adv. Synth. Catal. 2006, 348, 2397.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) A. F. G. Goldberg, B. M. Stoltz, Org. Lett. 2011, 13, 4474.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  A. Padwa, J. M. Kassir, M. A. Semones, M. D. Weingarten, J. Org. Chem. 1995, 60, 53.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXivVektbo%3D&md5=ef34077170712b4a7128ba19a21ad4ceCAS |

[50]  (a) A. Padwa, C. S. Straub, Adv. Cycloadd. 1999, 6, 55.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVertrg%3D&md5=c44de9a9d2e3df48222f57f98db807c6CAS |
      (b) A. Padwa, J. Organomet. Chem. 2001, 617–618, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  A. Padwa, C. S. Straub, J. Org. Chem. 2003, 68, 227.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsVegtbk%3D&md5=951e927df09346d215c7dc4058640b0bCAS | 12530844PubMed |

[52]  B. C. D. Martin, L. Q. Nguyen, C. D. Vanderwal, J. Org. Chem. 2012, 77, 17. and references cited therein.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1SrtLfF&md5=f5cfefe0b2045ab169d7c003c2de2fa3CAS |