Detection and Prevention of Aggregation-based False Positives in STD-NMR-based Fragment Screening
Amelia Vom A C , Stephen Headey A , Geqing Wang A , Ben Capuano A , Elizabeth Yuriev A , Martin J. Scanlon A B and Jamie S. Simpson A DA Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic. 3052, Australia.
B Australian Research Council Centre of Excellence for Coherent X-ray Science, Monash University, Parkville, Vic. 3052, Australia.
C Current address: Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Vic. 3052, Australia.
D Corresponding author. Email: jamie.simpson@monash.edu
Australian Journal of Chemistry 66(12) 1518-1524 https://doi.org/10.1071/CH13286
Submitted: 3 June 2013 Accepted: 22 July 2013 Published: 2 September 2013
Abstract
Aggregation of small organic compounds is a problem encountered in a variety of assay screening formats where it often results in detection of false positives. A saturation transfer difference-NMR-detected screen of a commercially available fragment library, followed by biochemical assay, identified several inhibitors of the enzyme ketopantoate reductase. These inhibitors were subsequently revealed to be aggregation-based false positives. Modification of the fragment screen by addition of detergent in the saturation transfer difference-NMR experiments allowed an assay format to be developed that resulted in the identification of genuine hit molecules suitable for further development.
References
[1] D. A. Erlanson, Top. Curr. Chem. 2012, 317, 1.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ShurvM&md5=17b224c46eb24a7db946498b771b3438CAS | 21695633PubMed |
[2] B. J. Davis, D. A. Erlanson, Bioorg. Med. Chem. Lett. 2013, 23, 2844.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltlOns7s%3D&md5=3c69458b6ebf979de109ae610fcd898dCAS | 23562240PubMed |
[3] J. B. Baell, G. A. Holloway, J. Med. Chem. 2010, 53, 2719.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2qsLw%3D&md5=09778d24282bccf88ad420e51d89c0d5CAS | 20131845PubMed |
[4] S. McGovern, E. Caselli, N. Grigorieff, B. Shoichet, J. Med. Chem. 2002, 45, 1712.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhslegtrk%3D&md5=f9c6179c31db0c25c22316f3431eee3cCAS | 11931626PubMed |
[5] J. Seidler, S. McGovern, T. Doman, B. Shoichet, J. Med. Chem. 2003, 46, 4477.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1Kkt74%3D&md5=83107c2b31baccd988b50d59a643fb1fCAS | 14521410PubMed |
[6] B. Y. Feng, A. Simeonov, A. Jadhav, K. Babaoglu, J. Inglese, B. K. Shoichet, C. P. Austin, J. Med. Chem. 2007, 50, 2385.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksVSlsrw%3D&md5=e3e4ba7400073b4ecaeb295bac99f420CAS | 17447748PubMed |
[7] S. R. LaPlante, R. Carson, J. Gillard, N. Aubry, R. Coulombe, S. Bordeleau, P. Bonneau, M. Little, J. O’Meara, P. L. Beaulieu, J. Med. Chem. 2013, 56, 5142.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXoslSqt7w%3D&md5=55cacc4b74522f2f2cafa461fefb7135CAS | 23730910PubMed |
[8] R. S. Ferreira, C. Bryant, K. K. H. Ang, J. H. McKerrow, B. K. Shoichet, A. R. Renslo, J. Med. Chem. 2009, 52, 5005.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVKntbg%3D&md5=416622bd81d87f68f7af6af3f22b4cadCAS | 19637873PubMed |
[9] K. E. D. Coan, B. K. Shoichet, J. Am. Chem. Soc. 2008, 130, 9606.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvF2gsL8%3D&md5=cbb4fa4c3efdcbc57b4229092a962382CAS |
[10] R. Zheng, J. Blanchard, Biochemistry 2000, 39, 3708.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsV2qtbg%3D&md5=990defb90ce461358f6898441ff4b187CAS | 10736170PubMed |
[11] A. Ciulli, G. Williams, A. G. Smith, T. L. Blundell, C. Abell, J. Med. Chem. 2006, 49, 4992.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms1SksL0%3D&md5=06e8bc25d7dd7a758536922e584e18e8CAS | 16884311PubMed |
[12] D. Scott, A. Ciulli, C. Abell, Nat. Prod. Rep. 2007, 24, 1009.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ygt7vM&md5=501448818ff472dfd9c2a08682645522CAS | 17898895PubMed |
[13] B. Y. Feng, B. K. Shoichet, Nat. Protoc. 2006, 1, 550.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOitLjO&md5=3359b067fffb011e2c14ad99bfcdb52cCAS | 17191086PubMed |
[14] B. Y. Feng, A. Shelat, T. N. Doman, R. K. Guy, B. K. Shoichet, Nat. Chem. Biol. 2005, 1, 146.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmt1yhu7k%3D&md5=a49da8ce4545dcdca9536b1aa5a46da8CAS | 16408018PubMed |
[15] S. L. McGovern, B. T. Helfand, B. Feng, B. K. Shoichet, J. Med. Chem. 2003, 46, 4265.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsFamsbs%3D&md5=aa7896c2c75179290182c6aa97a7a20eCAS | 13678405PubMed |
[16] M. Ouellet, J.-P. Falgueyret, M. D. Percival, Biochem. J. 2004, 377, 675.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXls1Glug%3D%3D&md5=8852fda08d532fce1d03e57ff497c633CAS | 14510637PubMed |
[17] B. Meyer, T. Peters, Angew. Chem. Int. Ed. 2003, 42, 864.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitFWltL4%3D&md5=3e87d84f7f3329ad18ca1942be6659cfCAS |
[18] S. J. Headey, A. Vom, J. S. Simpson, M. J. Scanlon, Biomol. NMR Assign. 2008, 2, 93.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsVCktrw%3D&md5=0b169787d59b03e0eb076e8bd852b059CAS | 19636932PubMed |
[19] A. Ciulli, D. Y. Chirgadze, A. G. Smith, T. L. Blundell, C. Abell, J. Biol. Chem. 2007, 282, 8487.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis1Kns70%3D&md5=5ff041f5f56c8e8fdcd13c30482acccdCAS | 17229734PubMed |
[20] T.D. Goddard, D. G. Kneller, SPARKY 3. University of California: San Francisco, 2006.