Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

The Synthesis and Structures of Tris(2-pyridylseleno)methyl Zinc Compounds with κ2-, κ3-, and κ4-Coordination Modes

Yi Rong A and Gerard Parkin A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Columbia University, New York, NY 10027, USA.

B Corresponding author. Email: parkin@columbia.edu

Australian Journal of Chemistry 66(10) 1306-1310 https://doi.org/10.1071/CH13263
Submitted: 20 May 2013  Accepted: 30 May 2013   Published: 26 July 2013

Abstract

Tris(2-pyridylseleno)methane, [Tpsem]H, has been employed to synthesize the bis(trimethylsilyl)amido zinc complex [κ3-Tpsem]ZnN(SiMe3)2. The latter compound provides access to a variety of other [Tpsem]ZnX derivatives, which include the isocyanate complex [κ4-Tpsem]ZnNCO, the hydrosulfido complex [κ3-Tpsem]ZnSH, the sulfido complex {[κ3-Tpsem]Zn}2(μ-S), the 2 : 1 complex [κ2-Tpsem]2Zn and the pyridyl-2-selenolate complex [κ4-Tpsem]Zn-(κ2-SeC6H4N), thereby demonstrating that the [Tpsem] ligand can exhibit κ2-, κ3-, and κ4-coordination modes. Variable-temperature 1H NMR spectroscopic studies demonstrate that [κ3-Tpsem]ZnN(SiMe3)2, [κ3-Tpsem]ZnSH, and {[κ3-Tpsem]Zn}2(μ-S) are fluxional on the NMR timescale.


References

[1]  (a) W. Sattler, G. Parkin, J. Am. Chem. Soc. 2011, 133, 9708.
         | Crossref | GoogleScholarGoogle Scholar | 21644528PubMed |
      (b) W. Sattler, G. Parkin, Chem. Sci. 2012, 3, 2015.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) W. Sattler, G. Parkin, J. Am. Chem. Soc. 2012, 134, 17462.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) Tris(2-pyridylseleno)methane has been previously reported in a,b but was synthesized via an alternative method involving the reaction of pyridine-2(1H)-selone with CHBr3 in the presence of KOH. K. K. Bhasin, J. Singh, J. Organomet. Chem. 2002, 658, 71.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) K. K. Bhasin, Phos. Sulf. Silicon 2005, 180, 1063.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) T. Tsuda, H. Washita, T. Saegusa, J. Chem. Soc. Chem. Commun. 1977, 468.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) L. R. Sita, J. R. Babcock, R. Xi, J. Am. Chem. Soc. 1996, 118, 10912.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) U. Wannagat, H. Kuckertz, C. Kruger, J. Pump, Z. Anorg. Allg. Chem. 1964, 333, 54.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. Cheng, D. R. Moore, J. J. Reczek, B. M. Chamberlain, E. B. Lobkovsky, G. W. Coates, J. Am. Chem. Soc. 2001, 123, 8738.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) R. A. Andersen, Inorg. Chem. 1979, 18, 2928.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) H. Phull, D. Alberti, I. Korobkov, S. Gambarotta, P. H. M. Budzelaar, Angew. Chem. Int. Ed. 2006, 45, 5331.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) D. A. Dickie, R. P. Ulibarri-Sanchez, P. J. Jarman, R. A. Kemp, Polyhedron 2013, 58, 92.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  For a recent example of isocyanate formation from the reaction of a cyclic disilylamide derivative with CO2, see: C. A. Stewart, D. A. Dickie, M. V. Parkes, J. A. Saria, R. A. Kemp, Inorg. Chem. 2010, 49, 11133.
         | Crossref | GoogleScholarGoogle Scholar | 21062034PubMed |

[5]  B3LYP, 6-31G**, and LAV3P basis sets.

[6]  τ5 = [βα]/60, where α and β are the two largest angles. See: A. W. Addison, T. N. Rao, J. Reedijk, J. Vanrijn, G. C. Verschoor, J. Chem. Soc. Dalton Trans. 1984, 1349.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  For example, the covalent radii of sulfur and selenium are 1.05 and 1.20 Å respectively. See: B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, S. Alvarez, Dalton Trans. 2008, 2832.
         | Crossref | GoogleScholarGoogle Scholar | 18478144PubMed |

[8]  For example, the average C–S–C and C–Se–C bond angles for two-coordinate chalcogen derivatives listed in the Cambridge Structural Database (reference [9]) are 97.8° and 95.8° respectively.

[9]  F. H. Allen, O. Kennard, Chemical Design Automation News 1993, 8, 1 & 31–37.

[10]  For the structure of [Tpsem]H at room temperature, see reference [2].

[11]  V. D. de Castro, G. M. de Lima, C. A. L. Filgueiras, M. T. P. Gambardella, J. Mol. Struct. 2002, 609, 199.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  (a) For examples of zinc hydrosulfido compounds, see: J. G. Melnick, A. Docrat, G. Parkin, Chem. Commun. 2004, 2870.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) E. Galardon, A. Tomas, P. Roussel, I. Artaud, Eur. J. Inorg. Chem. 2011, 3797.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) E. Galardon, A. Tomas, M. Selkti, P. Roussel, I. Artaud, Inorg. Chem 2009, 48, 5921.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) N. G. Spiropulos, E. A. Standley, I. R. Shaw, B. L. Ingalls, B. Diebels, S. V. Krawczyk, B. F. Gherman, A. M. Arif, E. C. Brown, Inorg. Chim. Acta 2012, 386, 83.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. Ruf, H. Vahrenkamp, Inorg. Chem. 1996, 35, 6571.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) M. Rombach, H. Vahrenkamp, Inorg. Chem. 2001, 40, 6144.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) M. M. Ibrahim, J. Seebacher, G. Steinfeld, H. Vahrenkamp, Inorg. Chem. 2005, 44, 8531.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) R. Han, R. Han, Chem. Commun. 1991, 717.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) A. Looney, R. Y. Han, I. B. Gorrell, M. Cornebise, K. Yoon, G. Parkin, A. L. Rheingold, Organometallics 1995, 14, 274.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  For a review of metal hydrosulfido compounds, see: S. Kuwata, M. Hidai, Coord. Chem. Rev. 2001, 213, 211.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  For unsuccessful efforts to obtain a zinc hydrosulfido compound using an azamacrocyclic ligand, see: J. Notni, H. Görls, E. Anders, Eur. J. Inorg. Chem. 2006, 1444.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  M. Ruf, H. Vahrenkamp, J. Chem. Soc. Dalton Trans. 1995, 1915.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  For an example of a polynuclear zinc complex that features μ3-sulfido bridges, see: C. B. Khadka, A. Eichhofer, F. Weigend, J. F. Corrigan, Inorg. Chem. 2012, 51, 2747.
         | Crossref | GoogleScholarGoogle Scholar | 22356421PubMed |

[17]  (a) Structurally characterized alkyl or aryl hydrosulfido compounds are not common. For some examples, see: Y. Ozawa, A. V. Demiguel, K. Isobe, J. Organomet. Chem. 1992, 433, 183.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) K. Goto, I. Shimo, T. Kawashima, Bull. Chem. Soc. Jpn. 2003, 76, 2389.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. C. Liang, P. A. Shapley, Organometallics 1996, 15, 1331.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. S. Morton, R. J. Lachicotte, D. A. Vicic, W. D. Jones, Organometallics 1999, 18, 227.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) S. Singh, S. Bhattacharya, Inorg. Chim. Acta 2011, 367, 230.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) M. Saito, H. Hashimoto, T. Tajima, M. Ikeda, J. Organomet. Chem. 2007, 692, 2729.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  τ4 = [360 – (α + β)]/141, where α + β is the sum of the two largest angles. See: L. Yang, D. R. Powell, R. P. Houser, Dalton Trans. 2007, 955.
         | Crossref | GoogleScholarGoogle Scholar | 17308676PubMed |

[19]  Average value for two crystallographically independent molecules.

[20]  P. Halder, T. K. Paine, Inorg. Chem. 2011, 50, 708.
         | Crossref | GoogleScholarGoogle Scholar | 21182247PubMed |

[21]  P. Halder, T. K. Paine, Indian J. Chem. 2011, 50, 1394.

[22]  (a) E. S. Raper, Coord. Chem. Rev. 1996, 153, 199.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) E. S. Raper, Coord. Chem. Rev. 1997, 165, 475.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. D. Akrivos, Coord. Chem. Rev. 2001, 213, 181.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  (a) D. V. V. Khasnis, M. Buretea, T. J. Emge, J. G. Brennan, J. Chem. Soc. Dalton Trans. 1995, 45.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) C. O. Kienitz, C. Thone, P. G. Jones, Inorg. Chem. 1996, 35, 3990.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) N. Chopra, L. C. Damude, P. A. W. Dean, J. J. Vittal, Can. J. Chem. 1996, 74, 2095.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. Narayan, V. K. Jain, B. Varghese, J. Chem. Soc. Dalton Trans. 1998, 2359.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  (a) Y. F. Cheng, T. J. Emge, J. G. Brennan, Inorg. Chem. 1994, 33, 3711.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) Y. F. Cheng, T. J. Emge, J. G. Brennan, Inorg. Chem. 1996, 35, 342.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  (a) R. K. Sharma, G. Kedarnath, A. Wadawale, V. K. Jain, B. Vishwanadh, Inorg. Chim. Acta 2011, 365, 333.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) R. K. Sharma, G. Kedarnath, A. Wadawale, C. A. Betty, B. Vishwanadh, V. K. Jain, Dalton Trans. 2012, 12129.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R. K. Sharma, G. Kedarnath, V. K. Jain, A. Wadawale, C. G. S. Pillai, M. Nalliath, B. Vishwanadh, Dalton Trans. 2011, 9194.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  G. Kedarnath, V. K. Jain, Coord. Chem. Rev. 2013, 257, 1409.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  Structurally characterized κ2-S,S-{[Tptm]H} coordination modes of the protonated ligand are known. See: K. Kitano, N. Kuwamura, R. Tanaka, R. Santo, T. Nishioka, A. Ichimura, I. Kinoshita, Chem. Commun. 2008, 1314.
         | Crossref | GoogleScholarGoogle Scholar |