Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Electrochemical Characterisation of Poly(aniline-co-N-methylaniline) and Poly(aniline-co-N-ethylaniline) Films on Pencil Graphite Electrode for Supercapacitor Applications

Andac Arslan A and Evrim Hur A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Faculty of Arts and Science, Eskişehir Osmangazi University, 26480 Eskişehir, Turkey.

B Corresponding author. Email: evrimhur@ogu.edu.tr

Australian Journal of Chemistry 66(7) 825-835 https://doi.org/10.1071/CH13083
Submitted: 22 February 2013  Accepted: 10 April 2013   Published: 14 May 2013

Abstract

In this work, poly(aniline-co-N-methylaniline) (co-PNMA) and poly(aniline-co-N-ethylaniline) (co-PNEA) have been electrochemically synthesised on pencil graphite electrode (PGE) surface to use as an electrode material for supercapacitors. The films have been formed from aqueous solution of monomers and sulfuric acid as electrolyte. The copolymer films have been characterised by cyclic voltammetry (CV), Mott-Schottky (MS) analysis, and scanning electron microscopy (SEM). The electrochemical storage properties of uncoated electrode and copolymer coated electrodes (PGE/co-PNMA and PGE/co-PNEA) have been investigated via CV, electrochemical impedance spectroscopy (EIS), and repeating chronopotentiometry (RCP) methods in 0.100 M H2SO4 solution. Experimental results indicate that PGE/co-PNMA exhibits higher specific capacitance than PGE/co-PNEA. Highest specific capacitance values of the PGE/co-PNMA and PGE/co-PNEA have been obtained as 213.85 mF g–1 (17.7 mF cm–2) and 48.60 mF g–1 (4.36 mF cm–2) at 50 mV s–1, respectively when compared with that of uncoated PGE which is 1.63 mF g–1 (0.14 mF cm–2). Charge-discharge characteristics of the electrodes have shown that both of the electrodes can be used as supercapacitor electrode active materials for low voltage (<10 V) applications.


References

[1]  R. Kötz, M. Carlen, Electrochim. Acta 2000, 45, 2483.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  S. Sarangapani, B. V. Tilak, C.-P. Chen, J. Electrochem. Soc. 1996, 143, 3791.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnsVGjtr8%3D&md5=1e857139b6c9bba76ad9e942770ecf5dCAS |

[3]  S. Hashmi, Natl. Acad. Sci. Lett. 2004, 27, 27.

[4]  Q. Wang, J.-L. Li, F. Gao, W.-S. Li, K.-Z. Wu, X.-D. Wang, New Carbon Mater. 2008, 23, 275.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  C. Peng, S. W. Zhang, D. Jewell, G. Z. Chen, Prog. Nat. Sci. 2008, 18, 777.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFGhur%2FJ&md5=05e9fd7ab940dffff20a47987bd88618CAS |

[6]  L. L. Zhang, R. Zhou, X. S. Zhao, J. Mater. Chem. 2010, 20, 5983.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Kjtbg%3D&md5=d0783753853645f3929c8c2a384764c5CAS |

[7]  L. L. Zhang, X. S. Zhao, Chem. Soc. Rev. 2009, 38, 2520.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSlsLbK&md5=b015df2f1457b311c326a22c938e94d2CAS | 19690733PubMed |

[8]  E. Frackowiak, Phys. Chem. Chem. Phys. 2007, 9, 1774.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvVGqtbc%3D&md5=954dd94647a00b9151b35f5deac99510CAS | 17415488PubMed |

[9]  A. G. Pandolfo, A. F. Hollenkamp, J. Power Sources 2006, 157, 11.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVOksbc%3D&md5=80ca1131698ca1c870e4243d28cf71edCAS |

[10]  K. Jurewicz, S. Delpeux, V. Bertagna, F. Beguin, E. Frackowiak, Chem. Phys. Lett. 2001, 347, 36.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXns1ajtrs%3D&md5=e96eff722836c83bc59455a5e5d0b1a6CAS |

[11]  R. K. Sharma, H. S. Oh, Y. G. Shul, H. S. Kim, J. Power Sources 2007, 173, 1024.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFykt7fF&md5=627fc1ad15c0feb7b6fe1f8736ca1bceCAS |

[12]  S. Devaraj, N. Munichandraiah, J. Electrochem. Soc. 2007, 154, A80.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSqtL8%3D&md5=1792105d7f25e320c9b243962b9074afCAS |

[13]  Y. Dilgin, B. Kızılkaya, B. Ertek, F. Işık, D. Giray Gilgin, Sens. Actuators B Chem. 2012, 171–172, 223.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  C.-C. Hu, C.-H. Hu, Mater. Chem. Phys. 2000, 65, 329.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjslKis7k%3D&md5=8db3dc39fcf46464f5eec8d7893d4ebbCAS |

[15]  K. Naoi, K. I. Kawase, M. Mori, M. Komiyama, J. Electrochem. Soc. 1997, 144, L173.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksVegu7s%3D&md5=03d938d506cf541fb403cfc8d5bf1edcCAS |

[16]  Q. Sun, M. C. Park, Y. Deng, Mater. Chem. Phys. 2008, 110, 276.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsFGjsbg%3D&md5=9336ae160c283d3d4b31716e39041041CAS |

[17]  H. Kim, J.-H. Kim, Y.-H. Lee, K.-B. Kim, J. Electrochem. Soc. 2005, 152, A2170.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  S. T. Mayer, R. W. Pekala, J. L. Kaschimitter, J. Electrochem. Soc. 1993, 140, 446.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhsFSqsLs%3D&md5=f04dc9e6afc2500cf8c221ca74b3ed95CAS |

[19]  W.-C. Chen, T.-C. Chen, H. Teng, Electrochim. Acta 2003, 48, 641.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotlGiug%3D%3D&md5=997074a9db2cd67b0c8e0b594cc30ea1CAS |

[20]  F. Fusalba, P. Gouerec, D. Villers, D. Belanger, J. Electrochem. Soc. 2001, 148, A1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsFyguw%3D%3D&md5=5ab0ebcb98ff176e2b004fe100e7447dCAS |

[21]  K. S. Ryu, K. M. Kim, Y. J. Park, N.-G. Park, M. G. Kang, S. H. Chang, Solid State Ion. 2002, 152–153, 861.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  K. S. Ryu, Y. Lee, K.-S. Han, Y. J. Park, M. G. Kang, N.-G. Park, S. H. Chang, Solid State Ion. 2004, 175, 765.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVChtLzO&md5=41997107712f23faa9ca710008423dadCAS |

[23]  H. Y. Pan, X. L. Zhu, X. G. Jian, Electrochim. Acta 2010, 55, 709.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFWlsL%2FK&md5=d2a93d0ebd090934066860bd0ee3d174CAS |

[24]  R. T. Chen, S. H. Chen, B. Y. Hsieh, Y. Chen, J. Polym. Sci. A Pol. Chem. 2009, 47, 2821.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVKitL0%3D&md5=575010c444a1ed4a83493d6b696e70fdCAS |

[25]  Y. Xue, Z. Sheng, H. Zhao, Z. Wu, X. Li, Y. He, Z. Yuan, Electrochim. Acta 2012, 59, 256.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1KrsLzL&md5=985c7340ec7a767ac6a954a2f6b3b8fbCAS |

[26]  A. Arslan, E. Hür, Int. J. Electrochem. Sc. 2012, 7, 12558.
         | 1:CAS:528:DC%2BC3sXkvVQ%3D&md5=6f9df415b9a8df49f1bdb2fec7f9443aCAS |

[27]  D. D. Borole, U. R. Kapadi, P. P. Mahulikar, D. G. Hundiwale, Mater. Lett. 2006, 60, 2447.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmtl2rs78%3D&md5=5fc8bbeb5d1efb9d38d31ee6bd620e22CAS |

[28]  U. M. Patil, R. R. Salunkhe, K. V. Gurav, C. D. Lokhande, Appl. Surf. Sci. 2008, 255, 2603.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCiu7nJ&md5=933567df2e73ed4b27d4bf522e60c698CAS |

[29]  Z. Mandić, M. K. Roković, T. Pokupčić, Electrochim. Acta 2009, 54, 2941.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  A. G. Macdiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Huang, L. S. Mu, N. L. D. Somasiri, W. Wu, S. I. Yangier, Mol. Cryst. Liq. Cryst. 1985, 121, 173.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXltFajtrY%3D&md5=09a028090783d571fb7a838074810749CAS |

[31]  E. M. Genies, M. Lapkowski, Synth. Met. 1988, 24, 61.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkt1yqsbk%3D&md5=e243dc342519c0b6836559a6f4686528CAS |

[32]  L. Liang, J. Liu, C. F. Windisch, G. J. Exarhos, Y. H. Lin, Angew. Chem. Int. Ed. 2002, 41, 3665.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotFymsL0%3D&md5=58a34566579df14c500e09a046998af4CAS |

[33]  B. Duran, G. Bereket, M. C. Turhan, S. Virtanen, Thin Solid Films 2011, 519, 5868.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFylsr8%3D&md5=cf762edf493b585b27ecedff129da4f2CAS |

[34]  F. C. Cebeci, H. Geyik, E. Sezer, A. S. Saraç, J. Electroanal. Chem. 2007, 610, 113.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yitbfE&md5=cb699b8fcc468ee8f51bf7a156e142afCAS |

[35]  L. Shadi, H. Gheybi, A. A. Entezami, K. D. Safa, J. Appl. Polym. Sci. 2012, 124, 2118.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOlsrnI&md5=082086844fb3a57a41c1abbcce5f43d6CAS |

[36]  A. S. Saraç, E. Doğru, M. Ateş, E. A. Parlak, Turk. J. Chem. 2006, 30, 401.

[37]  A. S. Bondarenko, G. A. Ragoisha, J. Solid State Electrochem. 2005, 9, 845.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1agsbjI&md5=b0399c290c30f80457a8b11991f816b2CAS |

[38]  K. L. Levine, D. E. Tallman, G. P. Bierwagen, J. Mater. Process. Technol. 2008, 199, 321.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislKqsQ%3D%3D&md5=7780c1a1c23cc783842fc2fbc5d815e6CAS |

[39]  G. A. Snook, P. Kao, A. S. Best, J. Power Sources 2011, 196, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFWntrnP&md5=ced167e79bdedfd8a2b87feaf5fd478cCAS |

[40]  M. Mastragostino, C. Arbizzani, F. Soavi, J. Power Sources 2001, 97–98, 812.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  Y.-Y. Horng, Y.-C. Lu, Y.-K. Hsu, C.-C. Chen, L.-C. Chen, K.-H. Chen, J. Power Sources 2010, 195, 4418.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsF2msbc%3D&md5=d3715b580067b3e4a84288822f03ae31CAS |

[42]  U. M. Patil, S. B. Kulkarni, V. S. Jamadade, C. D. Lokhande, J. Alloy. Comp. 2011, 509, 1677.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVCksw%3D%3D&md5=ecb25e80e1fd2a5aa3ca7a8aafc591f4CAS |

[43]  L. Li, E. Liu, J. Li, Y. Yang, H. Shen, Z. Huang, X. Xiang, W. Li, J. Power Sources 2010, 195, 1516.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtleku7vM&md5=0ed92e1c8183bb718fcb789b28423c8bCAS |

[44]  E. Frackowiak, F. Beguin, Carbon 2001, 39, 937.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisFOgsL4%3D&md5=a178c33d585da8624dd374ea6a5a0331CAS |

[45]  O. Martinez-Alvarez, M. Miranda-Hernandez, Carbon – Science and Technology 2009, 2, 125.
         | 1:CAS:528:DC%2BC3cXpvVelsQ%3D%3D&md5=daf967361aabe4d896f41af30b4f412fCAS |

[46]  Y. Hu, H. Zhu, J. Wang, Z. Chen, J. Alloy. Comp. 2011, 509, 10234.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1GntLfI&md5=82d0ec7a18b8ab00b0de1ede7201e1edCAS |

[47]  T. P. Gujar, W. Kim, I. Puspitasari, K. D. Jung, O.-S. Joo, Int. J. Electrochem. Sc. 2007, 22, 666.

[48]  D. S. Dhawale, A. Vinu, C. D. Lokhande, Electrochim. Acta 2011, 56, 9482.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Wls7fI&md5=4fdc9a47cee4fb9a1032d67315906b79CAS |

[49]  D. P. Dubal, W. B. Kim, C. D. Lokhande, J. Phys. Chem. Solids 2012, 73, 18.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVGmsLfE&md5=596fe91190568795dc71525d39a7bbcbCAS |

[50]  C.-C. Hu, C.-H. Chu, J. Electroanal. Chem. 2001, 83, 105.

[51]  Y.-K. Zhou, B.-L. He, W.-J. Zhou, J. Jang, X.-H. Li, B. Wu, H.-L. Li, Electrochim. Acta 2004, 49, 257.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptFGltrc%3D&md5=c173b6ef01d094de0f983e362a0f1915CAS |

[52]  R. K. Sharma, L. Zhai, Electrochim. Acta 2009, 54, 7148.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFWksrfL&md5=1ae35f35049a74573565b2c7608f7bc5CAS |

[53]  B. P. Bakhmatyuk, B. Y. Venhryn, I. I. Grygorchak, M. M. Micov, J. Power Sources 2008, 180, 890.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsFCgsrs%3D&md5=6f2b3ca4a9b8686a0cb64f11b0793beaCAS |

[54]  J. Wang, Y. Xu, X. Chen, X. Du, J. Power Sources 2007, 163, 1120.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCmtbzI&md5=fad4d69f0f6aed98a45df8dbb912c124CAS |

[55]  G. A. Snook, C. Peng, D. J. Fray, G. Z. Chen, Electrochem. Commun. 2007, 9, 83.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12gtL3P&md5=b25ec3c67eae6f1dda96a0d0225656e9CAS |

[56]  V. Gupta, N. Muira, Electrochem. Solid-State Lett. 2005, 8, A630.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht12nt7jE&md5=0b61c9cd44a1ab775862cf48268e8ce5CAS |