Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Monitoring the Early Stage Self-Assembly of Enzyme-Assisted Peptide Hydrogels

Richard J. Williams A B , James Gardiner A C , Anders B. Sorensen A , Silvia Marchesan A , Roger J. Mulder A , Keith M. McLean A and Patrick G. Hartley A
+ Author Affiliations
- Author Affiliations

A CSIRO Materials Science and Engineering, Clayton, Vic. 3168, Australia.

B School of Life and Enviromental Sciences, Deakin University, Waurn Ponds, Vic. 3026, Australia.

C Corresponding author. Email: james.gardiner@csiro.au

Australian Journal of Chemistry 66(5) 572-578 https://doi.org/10.1071/CH12557
Submitted: 19 December 2012  Accepted: 24 January 2013   Published: 21 February 2013

Abstract

The early stages of the self-assembly of peptide hydrogels largely determine their final material properties. Here we discuss experimental methodologies for monitoring the self-assembly kinetics which underpin peptide hydrogel formation. The early stage assembly of an enzyme-catalysed Fmoc-trileucine based self-assembled hydrogel was examined using spectroscopic techniques (circular dichroism, CD, and solution NMR) as well as chromatographic (HPLC) and mechanical (rheology) techniques. Optimal conditions for enzyme-assisted hydrogel formation were identified and the kinetics examined. A lag time associated with the formation and accumulation of the self-assembling peptide monomer was observed and a minimum hydrogelator concentration required for gelation was identified. Subsequent formation of well defined nano- and microscale structures lead to self-supporting hydrogels at a range of substrate and enzyme concentrations. 1H NMR monitoring of the early self-assembly process revealed trends that were well in agreement with those identified using traditional methods (i.e. HPLC, CD, rheology) demonstrating 1H NMR spectroscopy can be used to non-invasively monitor the self-assembly of peptide hydrogels without damaging or perturbing the system.


References

[1]  S. G. Zhang, Nat. Biotechnol. 2003, 21, 1171.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Cltr4%3D&md5=08d22e1a4a2dec550ec1becfb0fe9e7dCAS |

[2]  M. P. Lutolf, P. M. Gilbert, H. M. Blau, Nature 2009, 462, 433.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVylsLnF&md5=bac95d1e05dd5ceea7610eb7ad7d523dCAS |

[3]  F. Gelain, A. Horii, S. Zhang, Macromol. Biosci. 2007, 7, 544.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlslSlsb4%3D&md5=78aa87e08005669acdba26f451346a84CAS |

[4]  D. Roy, J. N. Cambre, B. S. Sumerlin, Prog. Polym. Sci. 2010, 35, 278.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotV2gsQ%3D%3D&md5=07f6afc7850374a4fe68e74871953d10CAS |

[5]  V. M. Tysseling-Mattiace, V. Sahni, K. L. Niece, D. Birch, C. Czeisler, M. G. Fehlings, S. I. Stupp, J. A. Kessler, J. Neurosci. 2008, 28, 3814.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkslSjur8%3D&md5=9d0f426e14bd5776a9f0b811f55b06b3CAS |

[6]  R. J. Mart, R. D. Osborne, M. M. Stevens, R. V. Ulijn, Soft Matter 2006, 2, 822.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFemsLrL&md5=f4fdf95bfc00b6e8f34d851bd3b9b338CAS |

[7]  J. Kisiday, M. Jin, B. Kurz, H. Hung, C. Semino, S. Zhang, A. J. Grodzinsky, Proc. Natl. Acad. Sci. USA 2002, 99, 9996.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlslKgtrY%3D&md5=8f290faeff6883922e39e84817032977CAS |

[8]  D. N. Woolfson, Z. N. Mahmood, Chem. Soc. Rev. 2010, 39, 3464.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVehs7rK&md5=210642e8ec4f09c3bf89287f69a13cecCAS |

[9]  M. Zelzer, R. V. Ulijn, Chem. Soc. Rev. 2010, 39, 3351.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVehs7rL&md5=9285413894b3d54318f8428cec2137a7CAS |

[10]  J. H. Collier, J. S. Rudra, J. Z. Gasiorowski, J. P. Jung, Chem. Soc. Rev. 2010, 39, 3413.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVehs73P&md5=e7e87a9838fe6d888c24a1dfedaa5545CAS |

[11]  Y. Loo, S. Zhang, C. A. E. Hauser, Biotechnol. Adv. 2012, 30, 593.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFOltrY%3D&md5=c53734e584565e0abbd2ee859d06ea32CAS |

[12]  L. Chronopoulou, A. R. Togna, G. Guarguaglini, G. Masci, F. Giammaruco, G. I. Togna, C. Palocci, Soft Matter 2012, 8, 5784.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmslWksbY%3D&md5=3d9b945b3bb6921c8bff9473f7c064a9CAS |

[13]  M. Zhou, A. M. Smith, A. K. Das, N. W. Hodson, R. F. Collins, R. V. Ulijn, J. E. Gough, Biomaterials 2009, 30, 2523.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVCmtrk%3D&md5=1238c04cb648ac513b0957c6f5083ff8CAS |

[14]  R. J. Williams, R. J. Mart, R. V. Ulijn, Peptide Sci. 2010, 94, 107.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12mt78%3D&md5=c139db89c30d6c102cb034d8fef038e9CAS |

[15]  R. V. Ulijn, J. Mater. Chem. 2006, 16, 2217.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xlt1ynu7w%3D&md5=162cb4f0bc3fc163b26d3e65a5a456b4CAS |

[16]  A. R. Hirst, S. Roy, M. Arora, A. K. Das, N. Hodson, P. Murray, S. Marshall, N. Javid, J. Sefcik, J. Boekhoven, J. H. van Esch, S. Santabarbara, N. T. Hunt, R. V. Ulijn, Nat. Chem. 2010, 2, 1089.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVOrsL3E&md5=e3e49c86304d61a8b5bf1ff6f1444091CAS |

[17]  B. Ozbas, J. Kretsinger, K. Rajagopal, J. P. Schneider, D. J. Pochan, Macromolecules 2004, 37, 7331.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFWmtbw%3D&md5=7bcc4fb1507da128f2f1d7053b096897CAS |

[18]  R. Ellis-Behnke, Nanotechnology 2011, 3, 70.
         | 1:CAS:528:DC%2BC3MXhtlCgsL8%3D&md5=d133371f4b8855ae22b7688355a94f04CAS |

[19]  R. J. Williams, T. E. Hall, V. Glattauer, J. White, P. J. Pasic, A. B. Sorensen, L. Waddington, K. M. McLean, P. D. Currie, P. G. Hartley, Biomaterials 2011, 32, 5304.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtleht7k%3D&md5=c86072f53c8b301dc7275dd0db6e22d4CAS |

[20]  S. Toledano, R. J. Williams, V. Jayawarna, R. V. Ulijn, J. Am. Chem. Soc. 2006, 128, 1070.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVCrtg%3D%3D&md5=07428370d67fec17b72ec81360c5e732CAS |

[21]  R. J. Williams, A. M. Smith, R. Collins, N. Hodson, A. K. Das, R. V. Ulijn, Nat. Nanotechnol. 2009, 4, 19.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFan&md5=fee7e8332546484ae5e2f6763e0c2cf2CAS |

[22]  A. M. Smith, R. J. Williams, C. Tang, P. Coppo, R. F. Collins, M. L. Turner, A. Saiani, R. V. Ulijn, Adv. Mater. 2008, 20, 37.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlt1Wgtbo%3D&md5=10706da48553898b02ef265e1f03aebaCAS |

[23]  M. Liu, C. Mao, X. He, H. Huang, J. K. Nicholson, J. C. Lindon, J. Magn. Reson. 1998, 132, 125.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsFSjsbg%3D&md5=0eb2f5f957e03239f1887330866d3897CAS |

[24]  P. J. Halling, U. Eichhorn, P. Kuhl, H.-D. Jakubke, Enzyme Microb. Technol. 1995, 17, 601.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXms1ertbo%3D&md5=68647fc86f3f8091e792ed48f6b0e067CAS |

[25]  K. Oyama, K.-I. Kihara, Y. Nonaka, J. Chem. Soc., Perkin Trans. 2 1981, 353.

[26]  C. Tang, A. M. Smith, R. F. Collins, R. V. Ulijn, A. Saiani, Langmuir 2009, 25, 9447.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsV2lurw%3D&md5=111c3bdd2fe08164692ac59096c5b757CAS |

[27]  S. Kunugi, H. Hirohara, N. Ise, Eur. J. Biochem. 1982, 124, 157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XktF2kt7Y%3D&md5=ccdd49beaa52f406c8c20344c7657135CAS |

[28]  M. Reches, E. Gazit, Nano Lett. 2004, 4, 581.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVOjsA%3D%3D&md5=0235dc24f3105f841cc04d4e7d20285eCAS |

[29]  Y. Feng, M. Taraban, Y. B. Yu, Soft Matter 2011, 7, 9890.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlejs7fE&md5=212a90726fd723b32d259467ea8547faCAS |

[30]  K. Wüthrich, NMR of Proteins and Nucleic Acids 1986 (Wiley: New York, NY).

[31]  H. Freibolin, Basic One- and Two-Dimensional NMR Spectroscopy 2010 (Wiley: New York, NY).