Polyguanidine as a Highly Efficient and Reusable Catalyst for Knoevenagel Condensation Reactions in Water
Xian-Liang Zhao A C , Ke-Fang Yang B C , Xuan-Gan Liu A , Chun-Lin Ye A , Li-Wen Xu B and Guo-Qiao Lai BA School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
B Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 310012, China.
C Corresponding authors. Email: xlzhao@iccas.ac.cn; kfyang@iccas.ac.cn
Australian Journal of Chemistry 66(4) 500-504 https://doi.org/10.1071/CH12507
Submitted: 15 November 2012 Accepted: 12 December 2012 Published: 24 January 2013
Abstract
Polyguanidine is used as a novel and highly efficient catalyst in the Knoevenagel reaction of aldehydes with active methylene compounds in water to afford substituted electrophilic alkenes. This method is applicable for a wide range of aldehydes including aromatic and heterocyclic substrates. The polyguanidine catalyst can be recovered by simple filtration and reused many times for the aqueous Knoevenagel reaction without loss of activity.
References
[1] (a) E. Knoevenagel, Ber. Dtsch. Chem. Ges. 1898, 31, 2585.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaD28XpsFyktA%3D%3D&md5=ab10a1b7ce11e17cd9a3e1068a532aecCAS |
(b) G. Jones, Org. React. 1967, 15, 204.
(c) L. F. Tietze, Chem. Rev. 1996, 96, 115.
| Crossref | GoogleScholarGoogle Scholar |
(d) L. F. Tietze, U. Beifuss, in Comprehensive Organic Synthesis (Eds B. M. Trost, I. Fleming, C. H. Heathcock) 1991, Vol. 2, pp. 341–392 (Pergamon Press: Oxford).
(e) F. Bigi, L. Chesini, R. Maggi, G. Sartori, J. Org. Chem. 1999, 64, 1033.
| Crossref | GoogleScholarGoogle Scholar |
(f) N. Yu, J. M. Aramini, M. W. Germann, Z. Huang, Tetrahedron Lett. 2000, 41, 6993.
| Crossref | GoogleScholarGoogle Scholar |
[2] G. Cardillo, S. Fabbroni, L. Gentilucci, M. Gianotti, A. Tolomelli, Synth. Commun. 2003, 33, 1587.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjslyjsL0%3D&md5=09a795d17f158491951c857d58f2cfd7CAS |
[3] W. Lehnert, Tetrahedron Lett. 1970, 11, 4723.
| Crossref | GoogleScholarGoogle Scholar |
[4] F. Delgado, J. Tamariz, G. Zepeda, M. Landa, R. Miranda, J. Garcia, Synth. Commun. 1995, 25, 753.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjvVGjtbY%3D&md5=83e9c565e2428811685ae2905e1ac9ceCAS |
[5] F. Texier-Boullet, A. Foucaud, Tetrahedron Lett. 1982, 23, 4927.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhslyks7Y%3D&md5=58558cc13cdf2dfcb9dad5ea576c1090CAS |
[6] Y. V. Subba Rao, D. E. De Vos, P. A. Jacobs, Angew. Chem. Int. Ed. 1977, 36, 2661.
[7] (a) T. I. Reddy, R. S. Varma, Tetrahedron Lett. 1997, 38, 1721.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvVOhu70%3D&md5=4d1d6447d674ffed93871739e6e7ada5CAS |
(b) Q. L. Wang, Y. D. Ma, B. Zuo, Synth. Commun. 1997, 27, 4107.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) C. Su, Z.-C. Chen, Q. G. Zheng, Synthesis 2003, 555.
| 1:CAS:528:DC%2BD3sXisVChtrs%3D&md5=599629bb254464c7ddc342bd9c872659CAS |
(b) J. R. Harjani, S. J. Nara, M. M. Salunkhe, Tetrahedron Lett. 2002, 43, 1127.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. W. Morrison, D. C. Forbes, J. H. Davis, Tetrahedron Lett. 2001, 42, 6053.
| Crossref | GoogleScholarGoogle Scholar |
(d) F. A. Khan, J. Dash, R. Satapathy, S. K. Upadhyay, Tetrahedron Lett. 2004, 45, 3055.
| Crossref | GoogleScholarGoogle Scholar |
(e) B. C. Ranu, R. Jana, Eur. J. Org. Chem. 2006, 3767.
| Crossref | GoogleScholarGoogle Scholar |
(f) Y. O. Sharma, M. S. Degani, Green Chem. 2009, 11, 526.
| Crossref | GoogleScholarGoogle Scholar |
(g) D. Z. Xu, Y. J. Liu, S. Shi, Y. M. Wang, Green Chem. 2010, 12, 514.
| Crossref | GoogleScholarGoogle Scholar |
[9] A. Coelho, A. Crespo, F. Fernandez, P. Biagini, A. Stefanachi, E. Sotelo, Comb. Chem. High T. Scr. 2008, 11, 843.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVSitrjN&md5=f021b2a1afbc4ff70b8e1bfcc9452c23CAS |
[10] B. Tamami, A. Fadavi, Catal. Commun. 2005, 6, 747.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWqt7jE&md5=862fb82c377f539dabd8cfdc5f1f4fa4CAS |
[11] P. Anastas, J. C. Warner, Green Chemistry: Theory and Practice 1998 (Oxford University Press: Oxford).
[12] Superbases for Organic Synthesis: Guanidines, Amidines and Phosphazenes and Related Organocatalysts (Ed. T. Ishikawa) 2009 (Wiley-VCH: Weinheim).
[13] (a) C.-J. Li, L. Chen, Chem. Soc. Rev. 2006, 35, 68.
| Crossref | GoogleScholarGoogle Scholar |
(b) D. Dallinger, C. O. Kappe, Chem. Rev. 2007, 107, 2563.
| Crossref | GoogleScholarGoogle Scholar |
(c) V. Polshettiwar, R. S. Varma, J. Org. Chem. 2007, 72, 7420.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) C. J. Li, T. H. Chan, Organic Reactions in Aqueous Media 1997 (John Wiley: New York, NY).
(b) Organic Synthesis in Water (Ed. P. A. Grieco) 1998 (Thomson Science: Glasgow)
(c) U. M. Lindstrom, Chem. Rev. 2002, 102, 2751.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. J. Li, Chem. Rev. 2005, 105, 3095.
| Crossref | GoogleScholarGoogle Scholar |
(e) C. J. Li, Chem. Rev. 1993, 93, 2023.
| Crossref | GoogleScholarGoogle Scholar |
(f) A. Chanda, V. V. Fokin, Chem. Rev. 2009, 109, 725.
| Crossref | GoogleScholarGoogle Scholar |
(g) R. N. Butler, A. G. Coyne, Chem. Rev. 2010, 110, 6302.
| Crossref | GoogleScholarGoogle Scholar |
[15] K. Sugino, K. Shirai, R. Kitawaki, J. Org. Chem. 1961, 26, 4122.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38Xlt1yqtg%3D%3D&md5=46de5218818dfb27e9a28590ccc10436CAS |