Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Discrete and Polymeric Cu(ii) Coordination Complexes with a Flexible bis-(pyridylpyrazole) Ligand: Structural Diversity and Unexpected Solvothermal Reactivity

Chris S. Hawes A B and Paul E. Kruger A C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Canterbury, Christchurch 8140, New Zealand.

B Current address: School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.

C Corresponding author. Email: paul.kruger@canterbury.ac.nz

Australian Journal of Chemistry 66(4) 401-408 https://doi.org/10.1071/CH12443
Submitted: 26 September 2012  Accepted: 4 November 2012   Published: 10 December 2012

Abstract

Reported here is the synthesis and structural characterisation of five copper complexes derived from the bis-bidentate ligand 4,4′-methylenebis(1-(2-pyridyl)-3,5-dimethylpyrazole), L. Complex 1, [Cu2L(CH3COO)4(OH2)2]·6H2O, is a single stranded unsaturated helical species that forms a highly connected three-dimensional hydrogen-bonding network, whereas [Cu2L(NO3)4], 2, is a coordination polymer derived from [Cu2L] fragments linked together via bridging nitrate anions to yield undulating two-dimensional sheets with (6,3)-topology. Complexes 3, 4, and 5 co-crystallise within a single batch when L is reacted under solvothermal conditions with Cu(NO3)2·2.5H2O in acetonitrile, and each contains a co-ligand formed by either decomposition of the solvent or ligand. Complex 3, [Cu4(NO3)4(µ-CH3COO)2(µ-OH)2L2], forms an unusual discrete cyclic tetrameric species containing acetate co-ligands derived through acetonitrile hydrolysis; whereas complex 4, [CuL(C2O4)(NO3)], forms a one-dimensional coordination polymer containing bridging oxalate co-ligands, formed through hydrolysis and oxidation of acetonitrile. Complex 5, [Cu2L(µ-CN)2], is a two-dimensional coordination polymer with (6,3) topology where bridging between Cu(i) centres is furnished by cyanide co-ligands, suggesting a ligand decomposition pathway for its origin, and produced with concomitant reduction of the Cu(ii) starting reagent. Having initially obtained 3, 4, and 5 serendipitously each were then prepared as pure phases by careful adjustment and control of the reaction conditions (reactant stoichiometry, concentrations, and solvothermal temperature), details of which are discussed.


References

[1]  Metal-Organic Frameworks: Applications from Catalysis to Gas Storage (Ed. D. Farrusseng) 2011 (Wiley-VCH: Weinheim).

[2]  Coordination Polymers: Design, Analysis and Applications (Eds S. R. Batten, S. M. Neville, D. R. Turner) 2009 (RSC Publishing: Cambridge).

[3]  H. C. Zhou, J. R. Long, O. M. Yaghi, Chem. Rev. 2012, 112, 637.

[4]  R. B. Getman, Y. Bae, C. E. Wilmer, R. Q. Snurr, Chem. Rev. 2012, 112, 703.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1CrsLnF&md5=0d4b36b90a2dc23cba5e2cd528893895CAS |

[5]  G. Ferey, C. Serre, Chem. Soc. Rev. 2009, 38, 1380.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVamu70%3D&md5=cf516df04822b65dfb8ac1dfbb1afa9aCAS |

[6]  P. J. Steel, Acc. Chem. Res. 2005, 38, 243.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXptlSjtQ%3D%3D&md5=2aedd6a6fa7fd84619984ed2f0892c8aCAS |

[7]  K. J. Gagnon, H. P. Perry, A. Clearfield, Chem. Rev. 2012, 112, 1034.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFCmsrnK&md5=721167250c6148b09f5afb1ec6fc472bCAS |

[8]  V. Colombo, S. Galli, H. J. Choi, G. D. Han, A. Maspero, G. Palmisano, N. Masciocchi, J. R. Long, Chem. Sci. 2011, 2, 1311.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVyhsbg%3D&md5=ce91525d7a73d8f0212a0ee0079f721eCAS |

[9]  (a) K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T. Bae, J. R. Long, Chem. Rev. 2012, 112, 724.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs12hsLzE&md5=0b5093885dbe066ccf3b0f561f9c03caCAS |
      (b) C. S. Hawes, C. M. Fitchett, S. R. Batten, P. E. Kruger, Inorg. Chim. Acta 2012, 389, 112.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. S. Hawes, R. Babarao, M. R Hill, K. F. White, B. F. Abrahams, P. E. Kruger, Chem. Commun. 2012, 48, 11558.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) L. Bellarosa, J. M. Castillo, T. Vlugt, S. Calero, N. Lopz, Chem. – Eur. J. 2012, 18, 12260.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1aqt7bO&md5=d5193e2296e59a46ef216e2c738934adCAS |
      (b) N. R. Kelly, S. Goetz, S. R. Batten, P. E. Kruger, CrystEngComm. 2007, 10, 68.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) N. R. Kelly, S. Goetz, S. R. Batten, P. E. Kruger, CrystEngComm. 2008, 10, 1018.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) E. Tynan, P. Jensen, P. E. Kruger, A. C. Lees, M. Nieuwenhuyzen, Dalton Trans. 2003, 1223.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) E. Tynan, P. Jensen, N. R. Kelly, P. E. Kruger, A. C. Lees, B. Moubaraki, K. S. Murray, Dalton Trans. 2004, 3440.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) E. Tynan, P. Jensen, P. E. Kruger, A. C. Lees, Chem. Commun. 2004, 776.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) E. Tynan, P. Jensen, P. E. Kruger, A. C. Lees, B. Moubaraki, K. S. Murray, CrystEngComm. 2005, 7, 90.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) C. Butler, S. Goetz, C. M. Fitchett, P. E. Kruger, T. Gunnlaugsson, Inorg. Chem. 2011, 50, 2723.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  P. Hagrman, D. Hagrman, J. Zubieta, Angew. Chem. Int. Ed. 1999, 38, 2638.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  X. Zhang, Coord. Chem. Rev. 2005, 249, 1201.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivVKntro%3D&md5=dc473191552d81948a0d40b55f9294c4CAS |

[13]  K. E. Knope, H. Kimura, Y. Yasaka, M. Nakahara, M. B. Andrews, C. L. Cahill, Inorg. Chem. 2012, 51, 3883.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivVOhsro%3D&md5=d4972012ce142b4e836d7cf3643c7c59CAS |

[14]  C. S. Hawes, P. E. Kruger, Polyhedron 2012, in press
         | Crossref | GoogleScholarGoogle Scholar |

[15]  A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, G. C. Verschoor, J. Chem. Soc., Dalton Trans. 1984, 1349.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtVeitb8%3D&md5=d3f5a6810758b0e5933aa8dc1b85847bCAS |

[16]  A. L. Spek, Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 148.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  K. Pavani, M. Singh, A. Ramanan, Aust. J. Chem. 2011, 64, 68.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVemuw%3D%3D&md5=e9e45b6020969fb69fd3ab8f6a8d4c5cCAS |

[18]  R. T. Stibrany, H. J. Schugar, J. A. Potenza, Acta Crystallogr. Sect. E- Struct. Rep. Online 2005, E61, m1904.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKjtLrJ&md5=0b9202c86f9a8a12d63ef059551e4bfcCAS |

[19]  X. Chen, M. Tong, Acc. Chem. Res. 2007, 40, 162.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  O. M. Yaghi, H. Li, J. Am. Chem. Soc. 1995, 117, 10401.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXot1Krurk%3D&md5=fbc5c0bfd05fc87f0e02579c61ae8a87CAS |

[21]  G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  SHELXL-97- Programs for X-ray Crystal Structure Refinement (Ed. G. M. Sheldrick) 1997 (University of Gottingen, Gottingen).

[23]  O. V. Dolomanov, A. J. Blake, N. R. Champness, M. Schröder, J. Appl. Cryst. 2003, 36, 1283.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntV2mtLo%3D&md5=ed67c3c99000327f4896e43f7d8cf6beCAS |