Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Aluminium Nanowire Electrodes for Lithium-Ion Batteries

Sherif Zein El Abedin A B E , Arnd Garsuch C and Frank Endres A D E
+ Author Affiliations
- Author Affiliations

A Institute of Particle Technology, Clausthal University of Technology, Arnold-Sommerfeld- Str. 6, 38678 Clausthal-Zellerfeld, Germany.

B Electrochemistry and Corrosion Laboratory, National Research Centre, 12622-Dokki, Cairo, Egypt.

C BASF SE, GCN/EE - M311, 67056-Ludwigshafen, Germany.

D EFZN Goslar, Am Stollen 19, 38640 Goslar, Germany.

E Corresponding authors. Email: sherif.zein@tu-clausthal.de; frank.endres@tu-clausthal.de

Australian Journal of Chemistry 65(11) 1529-1533 https://doi.org/10.1071/CH12330
Submitted: 14 July 2012  Accepted: 4 August 2012   Published: 23 August 2012

Abstract

In this paper, we report on the fabrication of mechanically stable aluminium nanowire electrodes for application in lithium-ion batteries. The electrochemical synthesis of the nanowire electrodes was performed in the chloroaluminate ionic liquid 1-ethyl-3-methylimidazolium chloride [EMIm]Cl/AlCl3 (40:60 mol %) using polycarbonate templates. The fabricated nanowire electrodes exhibit high mechanical stability after 50 cycles of lithium deposition/stripping without significant disintegration of the nanowire structure. The mechanical stability and strong adhesion of the Al-nanowires with the electrodeposited Al-electrode can lead to long cycling life. The fabricated Al-nanowire electrodes deliver a capacity of 790 mAh g–1 at 1C-rate.


References

[1]  G. Li, Z. Lu, B. Huang, H. Huang, R. Xue, L. Chen, Solid State Ionics 1995, 81, 15.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXptVeltLY%3D&md5=3edd72ea7b773649c08f335391222348CAS |

[2]  Q. Li, N. J. Bjerrum, J. Power Sources 2002, 110, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvFelur0%3D&md5=2a3fe7b19284a00c37b18a18a52b8e00CAS |

[3]  M. Winter, J. O. Besenhard, Electrochim. Acta 1999, 45, 31.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntlymsLk%3D&md5=ce5f7e3c4e2b324eb55f39f6f088629fCAS |

[4]  L. Y. Beaulieu, K. W. Eberman, R. L. Turner, L. J. Krause, J. R. Dahn, Electrochem. Solid-State Lett. 2001, 4, A137.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtFegsbk%3D&md5=0ca1884b0cff035787f6206a2bc980d9CAS |

[5]  N. C. Li, C. R. Martin, B. Scrosati, J. Power Sources 2001, 97–98, 240.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  J. W. Long, B. Dunn, D. R. Rolison, H. S. White, Chem. Rev. 2004, 104, 4463.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmslaqu7s%3D&md5=db1048a38e68656fd59076558c2f809aCAS |

[7]  L. H. S. Gasparotto, A. Prowald, N. Borisenko, S. Zein El Abedin, A. Garsuch, F. Endres, J. Power Sources 2011, 196, 2879.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1SrtLfN&md5=bd6c13e7d29092743afce9eef21feb5bCAS |

[8]  M. Au, S. McWhorter, H. Ajo, T. Adams, Y. Zhao, J. Gibbs, J. Power Sources 2010, 195, 3333.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFersQ%3D%3D&md5=3f2faaaed620c2fa181cea368689816bCAS |

[9]  M. B. Pomfret, D. J. Brown, A. Epshteyn, A. W. Purdy, J. C. Owrutsky, Chem. Mater. 2008, 20, 5945.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFeisLbJ&md5=f753c3a3b1a64a4354df4ef39eb3824fCAS |

[10]  E. Perre, L. Nyholm, T. Gustafsson, P.-L. Taberna, P. Simon, K. Edström, Electrochem. Commun. 2008, 10, 1467.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFOgtb7N&md5=313f2f948cb5276eeb2872db79c497c4CAS |

[11]  S. K. Cheah, E. Perre, M. Rooth, M. Fondell, A. Hårsta, L. Nyholm, M. Boman, T. Gustafsson, J. Lu, P. Simon, K. Edström, Nano Lett. 2009, 9, 3230.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFequrw%3D&md5=fa3e833bd8c9f321156a4733ad3401d7CAS |

[12]  G. Oltean, L. Nyholm, K. Edström, Electrochim. Acta 2011, 56, 3203.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVSns74%3D&md5=21dfb4cbdd8a041d5714899602b1285aCAS |

[13]  S. Zein El Abedin, F. Endres, ChemPhysChem 2012, 13, 250.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFaltLnN&md5=b7356ced8c0e1aefbd1b9f65df54bc4eCAS |

[14]  H. Sakaebe, H. Matsumoto, K. Tatsumi, Electrochim. Acta 2007, 53, 1048.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1WqurzE&md5=936213b42b09a09dddc95e5165e33c9eCAS |

[15]  S. Seki, Y. Mita, H. Tokuda, Y. Ohno, Y. Kobayashi, A. Usami, M. Watanabe, N. Terada, H. Miyashiro, Electrochem. Solid-State Lett. 2007, 10, A237.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvVKisbs%3D&md5=19dadad4676cb9c3ac45c7f6d47d179aCAS |

[16]  P. C. Howlett, D. R. MacFarlane, A. F. Hollenkamp, Electrochem. Solid-State Lett. 2004, 7, A97.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1Wls78%3D&md5=a61ddeacc9fbc89ea93297556969595aCAS |