Role of H+ in Polypyrrole and Poly(3,4-ethylenedioxythiophene) Formation Using FeCl3·6H2O in the Room Temperature Ionic Liquid, C4mpyrTFSI
Graeme A. Snook A , Anand I. Bhatt B D , Muhammad E. Abdelhamid A C and Adam S. Best BA Commonwealth Scientific and Industrial Research Organisation (CSIRO), Process Science and Engineering, Box 312, Clayton, Vic. 3169, Australia.
B Commonwealth Scientific and Industrial Research Organisation (CSIRO), Energy Technology, Box 312, Clayton, Vic. 3169, Australia.
C RMIT University, School of Applied Sciences, Melbourne, Vic. 3001, Australia.
D Corresponding author. Email: Anand.Bhatt@csiro.au
Australian Journal of Chemistry 65(11) 1513-1522 https://doi.org/10.1071/CH12322
Submitted: 6 July 2012 Accepted: 10 August 2012 Published: 10 September 2012
Abstract
The polymerisation reaction of pyrrole and 3,4-ethylenedioxythiophene using the chemical oxidant FeCl3·6H2O in the room temperature ionic liquid butyl-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (C4mpyrTFSI) has been investigated using cyclic voltammetry, UV/vis and IR spectroscopy. The voltammetric data for the Fe2+/3+ reaction is complicated by the presence of H+ introduced upon dissolution of the iron salt by deprotonation of the coordinated waters. The voltammetric and chemical reaction studies show that H+ itself, introduced to solution as trifluoromethanesulfonic acid (HTFSI), can act as the chemical oxidant for the polymerisation reaction. Voltammetric data also implies that in this system the Fe2+/3+ redox couple may not actually be involved in the polymerisation reaction and that the H+ introduced upon dissolution of the FeCl3·6H2O may be the sole cause of the oxidation reaction.
References
[1] G. A. Snook, P. Kao, A. S. Best, J. Power Sources 2011, 196, 1.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFWntrnP&md5=1d60bc19215fa7a3d9148916d019f4fbCAS |
[2] C. Peng, S. W. Zhang, D. Jewell, G. Z. Chen, Prog. Nat. Sci. 2008, 18, 777.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFGhur%2FJ&md5=a4c33cfcc75e2baf886d162c9198df5eCAS |
[3] G. A. Snook, G. Z. Chen, J. Electroanal. Chem. 2008, 612, 140.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVaqtbzL&md5=185818bd2973d80a0dd5da5e2f34104eCAS |
[4] G. A. Snook, G. Z. Chen, D. J. Fray, M. Hughes, M. Shaffer, J. Electroanal. Chem. 2004, 568, 135.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktFKqs7Y%3D&md5=9ac88d95d1e3a92cd9a80f523c49ca0cCAS |
[5] G. A. Snook, C. Peng, D. J. Fray, G. Z. Chen, Electrochem. Commun. 2007, 9, 83.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12gtL3P&md5=4d81ae786fa8cd4fcf56315552e2ecccCAS |
[6] M. Q. Wu, G. A. Snook, V. Gupta, M. Shaffer, D. J. Fray, G. Z. Chen, J. Mater. Chem. 2005, 15, 2297.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVygsLo%3D&md5=b77bf1086b807bfde311562670dbd627CAS |
[7] C. Arbizzani, M. Mastragostino, F. Soavi, J. Power Sources 2001, 100, 164.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXot1Knsrw%3D&md5=bcae3e39f2052ca480d5c54d6c073948CAS |
[8] L. Z. Fan, J. Maier, Electrochem. Commun. 2006, 8, 937.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsFGhtLo%3D&md5=39afbb4582effd796d36d7f905c9da17CAS |
[9] S. A. Hashmi, R. J. Latham, R. G. Linford, W. S. Schlindwein, Polym. Int. 1998, 47, 28.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntVKrs7c%3D&md5=d9762d4d2fbb47b6c1d52320c9b31211CAS |
[10] S. A. Hashmi, H. M. Upadhyaya, Solid State Ion. 2002, 152–153, 883.
| Crossref | GoogleScholarGoogle Scholar |
[11] M. Mastragostino, C. Arbizzani, F. Soavi, Solid State Ion. 2002, 148, 493.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktVWnsr8%3D&md5=c35f7fa20d1b9f79b4959f3c7fd7d2fbCAS |
[12] M. Mastragostino, F. Soavi and C. Arbizzani, in Advances in Li-Ion Batteries 2002 (Eds B. Scrosati, W. van Schalkwijk) (Kluwer Academic Publishers: Dordrecht).
[13] A. F. Diaz, K. K. Kanazawa, G. P. Gardini, J. Chem. Soc. Chem. Commun. 1979, 635.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXntVOh&md5=d1cd98f77e167468349873c0a1c0d4cdCAS |
[14] M. Grzeszczuk, G. Bator, Pol. J. Chem. 2002, 76, 1143.
| 1:CAS:528:DC%2BD38XlvVCqsL0%3D&md5=5c55cc58381b19906d4053b8669fc300CAS |
[15] K. K. Kanazawa, A. F. Diaz, R. H. Geiss, W. D. Gill, J. F. Kwak, J. A. Logan, J. F. Rabolt, G. B. Street, J. Chem. Soc. Chem. Commun. 1979, 854.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhtFWnsr0%3D&md5=b13e9ae3468345d8dde7485fa17641a6CAS |
[16] P. A. Topart, M. A. M. Noel, Anal. Chem. 1994, 66, 2926.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltlGns7Y%3D&md5=44b728354b840221629d275a54f8bacbCAS |
[17] K. Lota, V. Khomenko, E. Frackowiak, J. Phys. Chem. Solids 2004, 65, 295.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsFOjtg%3D%3D&md5=71b6c88cc857593ad5fd3b6a0e5b1d5fCAS |
[18] R. McNeill, D. E. Weiss, J. H. Wardlaw, R. Siudak, Aust. J. Chem. 1963, 16, 1056.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXjtFCltQ%3D%3D&md5=1189271750f0ed7302968424f265c5e4CAS |
[19] J. Stejskal, R. G. Gilbert, Pure Appl. Chem. 2002, 74, 857.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1ajtL4%3D&md5=055b2804be2a15fdf00097b0f7086c99CAS |
[20] G. A. Snook, A. S. Best, J. Mater. Chem. 2009, 19, 4248.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntVKitLY%3D&md5=1d48934e27d48bfcb3301d770690a4c0CAS |
[21] S. Inagi, T. Fuchigami, Synth. Met. 2008, 158, 782.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12jtb%2FF&md5=9e105fd7c566c8192383319eaa0aad0aCAS |
[22] J. M. Pringle, O. Ngamna, J. Chen, G. G. Wallace, M. Forsyth, D. R. MacFarlane, Synth. Met. 2006, 156, 979.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xos12rtL0%3D&md5=4f8e3b841e946cbf8f3d71d7aa21b957CAS |
[23] J. M. Pringle, O. Ngamna, C. Lynam, G. G. Wallace, M. Forsyth, D. R. MacFarlane, Macromolecules 2007, 40, 2702.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFegu7w%3D&md5=a7f2caf826202844d6f9774c0bbc0902CAS |
[24] Y. F. Yang, S. L. Mu, Electrochim. Acta 2008, 54, 506.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Grur7J&md5=58fe841036f4887556a9cfdd90a69ed8CAS |
[25] F. Endres, Abstr. Pap. Am. Chem. Soc. 2004, 228, U71.
[26] Y. K. Koo, B. H. Kim, D. H. Park, J. Joo, Mol. Cryst. Liq. Cryst. 2004, 425, 55.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisl2jsQ%3D%3D&md5=97f86977983f56d1f41bd75ac3df26a3CAS |
[27] P. Kubisa, J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 4675.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVygsLjM&md5=83e200fa09a36156e5f20291cf3f23bdCAS |
[28] J. H. Mazurkiewicz, P. C. Innis, G. G. Wallace, D. R. MacFarlane, M. Forsyth, Synth. Met. 2003, 135–136, 31.
| Crossref | GoogleScholarGoogle Scholar |
[29] M. Yamagata, N. Tachikawa, Y. Katayama, T. Miura, Electrochim. Acta 2007, 52, 3317.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1GlsrY%3D&md5=d4f10f0d10c92acece3d6c360031f1b9CAS |
[30] A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications 2001 (Wiley: New York, NY).
[31] L. Lopes, J. de Laat, B. Legube, Inorg. Chem. 2002, 41, 2505.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xis12gt7o%3D&md5=59b225b6ca8536b728b8937dbfbfd44dCAS |
[32] I.-W. Sun, J. R. Sanders, C. L. Hussey, J. Electrochem. Soc. 1989, 136, 1415.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXktFChurY%3D&md5=07de72bd3ea5cc660c0780171b7c69a9CAS |
[33] P. Day, C. K. Jørgensen, J. Chem. Soc. 1964, 6226.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXksV2rtbc%3D&md5=e75e72e7ef1b0178116043e71fe89bc0CAS |
[34] T. B. Scheffler, C. L. Hussey, K. R. Seddon, C. M. Kear, P. D. Armitage, Inorg. Chem. 1983, 22, 2099.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXksVGgsrk%3D&md5=566248332c4f8511f06e307700c79e38CAS |
[35] A. Jaworski, M. Donten, Z. Stojek, J. G. Osteryoung, Anal. Chem. 1999, 71, 243.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntl2ksb8%3D&md5=ec47d3f7e243bdf815b3c300a2a06300CAS |
[36] D. S. Silvester, K. R. Ward, L. Aldous, C. Hardacre, R. G. Compton, J. Electroanal. Chem. 2008, 618, 53.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsFaisro%3D&md5=1af5aadd7da458cf0e7fd57128facb8aCAS |
[37] L. Aldous, D. S. Silvester, W. R. Pitner, R. G. Compton, M. C. Lagunas, C. Hardacre, J. Phys. Chem. C 2007, 111, 8496.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvVSqurY%3D&md5=7ffe99c731fc53eafc0974e99a367b4aCAS |
[38] D. S. Silvester, L. Aldous, C. Hardacre, R. G. Compton, J. Phys. Chem. B 2007, 111, 5000.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlemsrw%3D&md5=9a27e93df1a25d1e4cac437471c45356CAS |
[39] A. I. Bhatt, I. May, V. A. Volkovich, D. Collison, M. Helliwell, I. B. Polovov, R. G. Lewin, Inorg. Chem. 2005, 44, 4934.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVCisL8%3D&md5=3ef3e3f10c1bd0a833a03e57d4bb56baCAS |
[40] G. A. Snook, T. L. Greaves, A. S. Best, J. Mater. Chem. 2011, 21, 7622.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtFent7k%3D&md5=355a0ffac0c969eb27bc0c1760608049CAS |
[41] M. Salmon, K. K. Kanazawa, A. F. Diaz, M. Krounbi, J. Polym. Sci., Part C 1982, 20, 187.
| 1:CAS:528:DyaL38Xht1ektro%3D&md5=a2ed5b43e4f1e4b2038d35e92cf2804cCAS |
[42] H. Kato, O. Nishikawa, T. Matsui, S. Honma, H. Kokado, J. Phys. Chem. 1991, 95, 6011.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXksF2ktbk%3D&md5=2e73f9ec5bc423120d28920b00f8e549CAS |
[43] S. V. Selvaganesh, J. Mathiyarasu, K. L. N. Phani, V. Yegnaraman, Nanoscale Res. Lett. 2007, 2, 546.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtl2rtrvK&md5=374abf690966cd723431908ee81bc3f7CAS |
[44] I. Rey, P. Johansson, J. Lindgren, J. C. Lassègues, J. Grondin, L. Servant, J. Phys. Chem. A 1998, 102, 3249.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivFCit7c%3D&md5=57a7791b678340483bdb7cbd68b3cbe2CAS |
[45] G. A. Snook, A. S. Best, A. G. Pandolfo, A. F. Hollenkamp, Electrochem. Commun. 2006, 8, 1405.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptlSqsLk%3D&md5=0f273811f44685cdb7fb498a423597d1CAS |