Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT (Open Access)

The Chemical Problem of Energy Change: Multi-Electron Processes

Joseph L. Hughes A B and Elmars Krausz A
+ Author Affiliations
- Author Affiliations

A Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.

B Corresponding author. Email: hughes@rsc.anu.edu.au




Joseph Hughes completed his PhD in the group of Professor Elmars Krausz at the Research School of Chemistry, Australian National University, in 2006. He has held postdoctoral positions in France at CEA Saclay and École Polytechnique. His recent research interests lie in light-induced processes and mechanisms of solar energy conversion.



Elmars Krausz, a graduate of the University of Sydney, is currently Group Leader at the Research School of Chemistry Australian National University. He has worked in key areas of chemical spectroscopy and photophysics in the condensed phase, most recently concentrating on fundamental processes in natural and artificial photosynthesis.

Australian Journal of Chemistry 65(6) 591-596 https://doi.org/10.1071/CH12105
Submitted: 17 February 2012  Accepted: 5 March 2012   Published: 10 May 2012

Abstract

This special issue is focussed on arguably the most important fundamental question in contemporary chemical research: how to efficiently and economically convert abundant and thermodynamically stable molecules, such as H2O, CO2, and N2 into useable fuel and food sources. The 3 billion year evolutionary experiment of nature has provided a blueprint for the answer: multi-electron catalysis. However, unlike one-electron transfer, we have no refined theories for multi-electron processes. This is despite its centrality to much of chemistry, particularly in catalysis and biology. In this article we highlight recent research developments relevant to this theme with emphasis on the key physical concepts and premises: (i) multi-electron processes as stepwise single-electron transfer events; (ii) proton-coupled electron transfer; (iii) stimulated, concerted, and co-operative phenomena; (iv) feedback mechanisms that may enhance electron transfer rates by minimizing activation barriers; and (v) non-linearity and far-from-equilibrium considerations. The aim of our discussion is to provide inspiration for new directions in chemical research, in the context of an urgent contemporary issue.


References

[1]  World Key Energy Statistics 2011, International Energy Agency, http://www.iea.org.

[2]  N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2006, 103, 15729.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFymtbrJ&md5=e4252961598780ced30bcd2df19c9437CAS |

[3]  D. G. Nocera, ChemSusChem 2009, 2, 387.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlCju78%3D&md5=6da08e70820241e9c47a378939b84c66CAS |

[4]  J. L. Dempsey, A. J. Esswein, D. R. Manke, J. Rosenthal, J. D. Soper, D. G. Nocera, Inorg. Chem. 2005, 44, 6879.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGis77P&md5=1000e4bc38384a8f0586954fd90cefa9CAS |

[5]  H. Tributsch, Electrochim. Acta 2007, 52, 2302.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktlOruw%3D%3D&md5=5462e11d66fd9f6993888ee9de15016eCAS |

[6]  D. G. Nocera, Inorg. Chem. 2009, 48, 10001.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFKktLrP&md5=dab2a773bcbbb1bf5e6f63e44277b4eaCAS |

[7]  S. V. Rosokha, J. K. Kochi, Acc. Chem. Res. 2008, 41, 641.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktFSgsro%3D&md5=7c9d1207cb4cc4267a3059dbf367cba8CAS |

[8]  S. M. Hubig, R. Rathore, J. K. Kochi, J. Am. Chem. Soc. 1999, 121, 617.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXis1Gquw%3D%3D&md5=c4aa68cefcae1d4d8e9531acfcaaf111CAS |

[9]  K. Y. Wong, P. N. Schatz, S. B. Piepho, J. Am. Chem. Soc. 1979, 101, 2793.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXktlyktrc%3D&md5=5f2f073dc9c03d21b1e378f7b198859cCAS |

[10]  S. B. Piepho, P. N. Schatz, Group Theory in Spectroscopy with Applications to Magnetic Circular Dichroism, 1983 (Wiley-Interscience: New York).

[11]  S. Hammes-Schiffer, A. A. Stuchebrukhov, Chem. Rev. 2010, 110, 6939.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlyhtbzN&md5=bb18f93f356bb51078c4b5de56a18a6dCAS |

[12]  E. Krausz, J. L. Hughes, P. Smith, R. Pace, S. Peterson Årsköld, Photochem. Photobiol. Sci. 2005, 4, 744.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt1aku7Y%3D&md5=2d917b5359c96e9dd6f7c8fafe44f95eCAS |

[13]  T. Renger, E. Schlodder, ChemPhysChem 2010, 11, 1141.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1agsbo%3D&md5=ec75475b0bc08c586a2aef4ade8c8a8eCAS |

[14]  T. Renger, E. Schlodder, J. Photochem. Photobiol. B 2011, 104, 126.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFWjs7w%3D&md5=cd5e82111469d217ba9ad02d1ab18c4bCAS |

[15]  Y. Umena, K. Kawakami, J. R. Shen, N. Kamiya, Nature 2011, 473, 55.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslCmtLg%3D&md5=f7b48594fae4a870a2b3d1c7ed10df43CAS |

[16]  Y. L. Pushkar, J. Yano, K. Sauer, A. Boussac, V. K. Yachandra, Proc. Natl. Acad. Sci. USA 2008, 105, 1879.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitl2ntL8%3D&md5=7989d9d4ad23464d20e8e92637293cefCAS |

[17]  T. G. Gray, D. G. Nocera, Chem. Commun. 2005, 1540.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsVaru70%3D&md5=09d54fc19ba63f27fcdcc10349a1aa5fCAS |

[18]  T. S. Teets, T. R. Cook, B. D. McCarthy, D. G. Nocera, Inorg. Chem. 2011, 50, 5223.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvFWjt70%3D&md5=c9766a5888885bdac195cedb26c15c3eCAS |

[19]  E. Gileadi, J. Electroanal. Chem. 2002, 532, 181.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntFyhtbs%3D&md5=cb529b24edecb5a0194d7527535957d6CAS |

[20]  T. Hannappel, B. Burfeindt, W. Storck, F. Willig, J. Phys. Chem. B 1997, 101, 6799.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltFyntbg%3D&md5=762dd7cdb69d3d69ad90207da7852a4cCAS |

[21]  J. Z. Pu, J. L. Gao, D. G. Truhlar, Chem. Rev. 2006, 106, 3140.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xntlagt7w%3D&md5=9421fcdbb2d1033d0fa05e00d26d4978CAS |

[22]  G. K. Schenter, B. C. Garrett, D. G. Truhlar, J. Phys. Chem. B 2001, 105, 9672.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXms1Ohu7o%3D&md5=6403402b33e811376cc483e1d749963aCAS |

[23]  H. Tributsch, L. Pohlmann, Science 1998, 279, 1891.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvFKns7g%3D&md5=2a8146ac843f7e16463ab6efc4a8c892CAS |

[24]  L. Pohlmann, H. Tributsch, J. Theor. Biol. 1992, 156, 63.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XkvVGgtLg%3D&md5=16cd23236ad575f5e1ab7abdff7735a5CAS |

[25]  L. Pohlmann, H. Tributsch, J. Theor. Biol. 1992, 155, 443.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlsVChtQ%3D%3D&md5=2c90f210a4bb8662f7b14ae6d60be75aCAS |

[26]  H. Tributsch, J. Electroanal. Chem. 1992, 331, 783.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xltl2lsr0%3D&md5=5d1a48e1f53de9db9da26ec9cf722305CAS |

[27]  H. Tributsch, L. Pohlmann, Chem. Phys. Lett. 1992, 188, 338.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhsF2rt74%3D&md5=09669d42a9a9086299e7b14c55f4847aCAS |

[28]  H. Tributsch, L. Pohlmann, J. Electroanal. Chem. 1995, 396, 53.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  H. Haken, Synergetics, An Introduction, 1983 (Springer: Berlin).

[30]  Chem. Rev. 2010, 110, special issue on proton-coupled electron transfer.

[31]  P. Faller, C. Goussias, A. W. Rutherford, S. Un, Proc. Natl. Acad. Sci. USA 2003, 100, 8732.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvVyitr0%3D&md5=d877767b267d9ae7c6c181f216ffa3ceCAS |

[32]  R. Balasubramanian, G. Blondin, J. C. Canales, C. Costentin, J.-M. Latour, M. Robert, J.-M. Savéant, J. Am. Chem. Soc. 2012, 134, 1906.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVOlsg%3D%3D&md5=9ea193756105cb0574951e1d577cd1ddCAS |

[33]  C. Costentin, V. Hajj, C. Louault, M. Robert, J. M. Saveant, J. Am. Chem. Soc. 2011, 133, 19160.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVCgt7vK&md5=d415255715b4434c328057a1fbee27c5CAS |

[34]  M. Sjodin, S. Styring, H. Wolpher, Y. H. Xu, L. C. Sun, L. Hammarstrom, J. Am. Chem. Soc. 2005, 127, 3855.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  J. J. Warren, T. A. Tronic, J. M. Mayer, Chem. Rev. 2010, 110, 6961.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1GqsbvN&md5=d40acf19cdfaffc1c7dd444bc053e19eCAS |

[36]  S. Cattarin, S. Flechter, C. Pettenkofer, H. Tributsch, J. Electrochem. Soc. 1990, 137, 3484.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtlyluw%3D%3D&md5=3096b88d04da37d899c3613b1d188a24CAS |

[37]  J. Wojtowicz, in Modern Aspects of Electrochemistry, 1972 (Eds J. O. M. Bockris, B. E. Conway) (Plenum Press: New York).

[38]  D. A. Kraut, K. S. Carroll, D. Herschlag, Annu. Rev. Biochem. 2003, 72, 517.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFSgtbw%3D&md5=91e9b9910a6ed652122e7425dca793ecCAS |

[39]  G. G. Hammes, S. J. Benkovic, S. Hammes-Schiffer, Biochemistry 2011, 50, 10422.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOgu7rL&md5=4c4fa709c3abc177c34da60bfc238cf5CAS |

[40]  Y. Paltiel, G. Jung, T. Aqua, D. Mocatta, U. Banin, R. Naaman, Phys. Rev. Lett. 2010, 104, 016804.
         | 1:STN:280:DC%2BC3c3jslOgtQ%3D%3D&md5=2bda5654616c58ac993d85bf62a60edaCAS |

[41]  D. R. Ort, W. W. Parson, Biophys. J. 1979, 25, 355.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhtFKksb4%3D&md5=7cc614d8309be6adcff43f90f5ec749cCAS |

[42]  H. Tributsch, L. Pohlmann, J. Theor. Biol. 1996, 178, 17.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhslynsLc%3D&md5=7fd0958ec9798c5aedb946348b101b5eCAS |

[43]  S. E. Braslavsky, G. E. Heibel, Chem. Rev. 1992, 92, 1381.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xls1Smsbc%3D&md5=f2795d15efd605ed23ddf9b19a0ef1f5CAS |

[44]  H. J. M. Hou, D. Mauzerall, J. Photochem. Photobiol. B 2011, 104, 357.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFWjsbY%3D&md5=8c9b4e23e3d49777e792b98509a09764CAS |

[45]  A. C. Rizzi, M. van Gastel, P. A. Liddell, R. E. Palacios, G. F. Moore, G. Kodis, A. L. Moore, T. A. Moore, D. Gust, S. E. Braslavsky, J. Phys. Chem. A 2008, 112, 4215.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksVOksbY%3D&md5=3190ae79c74ce0ec711240d541fd685aCAS |

[46]  R. Krivanek, H. Dau, M. Haulmann, Biophys. J. 2008, 94, 1890.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1yqu74%3D&md5=521b9ceb8dc9aa4e33de33102cacc334CAS |

[47]  K. Okamoto, S. Fukuzumi, J. Am. Chem. Soc. 2003, 125, 12416.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsVehsbw%3D&md5=e03c3576bd55f6ce7c789a8ee151b74cCAS |

[48]  J. Yuasa, T. Suenobu, S. Fukuzumi, J. Am. Chem. Soc. 2003, 125, 12090.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1OmsLY%3D&md5=b5addb9a70af60c0654a1c143f3a9f96CAS |

[49]  J. S. Park, E. Karnas, K. Ohkubo, P. Chen, K. M. Kadish, S. Fukuzumi, C. W. Bielawski, T. W. Hudnall, V. M. Lynch, J. L. Sessler, Science 2010, 329, 1324.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFajs7rO&md5=70fc9767e48fef005a7abc2a5696ff71CAS |

[50]  S. Fukuzumi, K. Ohkubo, Coord. Chem. Rev. 2010, 254, 372.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFyjsbrP&md5=868b9738180d008d80a7ee51d571e7a9CAS |

[51]  Y. Morimoto, H. Kotani, J. Park, Y. M. Lee, W. Nam, S. Fukuzumri, J. Am. Chem. Soc. 2011, 133, 403.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFKjtbfN&md5=fa11e39ddb9544b100875f78b0cb977fCAS |

[52]  T. Kawashima, K. Ohkubo, S. Fukuzumi, Phys. Chem. Chem. Phys. 2011, 13, 3344.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFymsLc%3D&md5=fc403c0febc84614323be48e01b1778dCAS |

[53]  J. S. Vrettos, D. A. Stone, G. W. Brudvig, Biochemistry 2001, 40, 7937.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktFekuro%3D&md5=993632a29787098e74038ee46c487bfaCAS |

[54]  G. Hendry, T. Wydrzynski, Biochemistry 2003, 42, 6209.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtlehtb0%3D&md5=f753abe7f72b559f1464408dc21971d4CAS |

[55]  T. Katsuki, Coord. Chem. Rev. 1995, 140, 189.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXks1Kgsrw%3D&md5=9311283a0074782a0143f4ed2223ef79CAS |

[56]  C. Herrero, J. L. Hughes, A. Quaranta, N. Cox, A. W. Rutherford, W. Leibl, A. Aukauloo, Chem. Commun. 2010, 46, 7605.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ClsLzI&md5=3773ebd17ad98d250a60c14a79100510CAS |

[57]  A. Okamoto, R. Nakamura, H. Osawa, K. Hashimoto, J. Phys. Chem. C 2008, 112, 19777.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVShsLrM&md5=03f4962ef7401d4cae017aee3543c27bCAS |

[58]  R. Steffen, K. Jackman, E. Krausz, Meas. Sci. Technol. 2008, 19, 075601.

[59]  C. Costentin, V. Hajj, M. Robert, J. M. Saveant, C. Tard, Proc. Natl. Acad. Sci. USA 2011, 108, 8559.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVGqtL4%3D&md5=bb49085a03b1be046a3bf8a58c80377aCAS |