Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Highly Sheared Anti-Parallel Dipolar Carbonyl···Carbonyl Interaction in the Crystal Packing of Strapped Crown-3-Pyromellitimide

Ethan Nam Wei Howe A , Mohan Bhadbhade B and Pall Thordarson A C
+ Author Affiliations
- Author Affiliations

A School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.

B Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia.

C Corresponding author. Email: p.thordarson@unsw.edu.au

Australian Journal of Chemistry 65(10) 1384-1389 https://doi.org/10.1071/CH12085
Submitted: 8 February 2012  Accepted: 21 May 2012   Published: 28 June 2012

Abstract

Non-covalent dipolar interactions between pairs of carbonyls have been demonstrated to play a significant role in the crystal packing and formation of supramolecular structural architecture of small organic molecules. Under high dilution, the strapped crown-3-pyromellitimide 4 and macrocyclic crown-6-bispyromellitimide 5 were synthesised in concert and demonstrated selective molecular recognition towards Na+ and K+, respectively. The molecular structure of strapped crown-3-pyromellitimide 4 was solved using X-ray crystallography and an unusual highly sheared anti-parallel dipolar carbonyl···carbonyl interaction was observed in the crystal packing. The intermolecular interaction has a torsion angle of 44.1°, and deviates from the three idealised motifs reported in literature. This finding further highlights the importance and versatility of dipolar carbonyl···carbonyl interaction in the crystal packing of organic molecules.


References

[1]  J.-M. Lehn, Angew. Chem. Int. Edit. 1988, 27, 89.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  R. Paulini, K. Müller, F. Diederich, Angew. Chem. Int. Edit. 2005, 44, 1788.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXislWkt7s%3D&md5=28a6e4bf7b32480bb9a21748bfa2614bCAS |

[3]  C.-Q. Wan, T. C. W. Mak, Cryst. Growth Des. 2011, 11, 832.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ems7o%3D&md5=464c891a5b76cdc2f02969a27351837bCAS |

[4]  H.-J. Böhm, G. Klebe, Angew. Chem. Int. Edit. 1996, 35, 2588.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  C. Fäh, L. A. Hardegger, M.-O. Ebert, W. B. Schweizer, F. Diederich, Chem. Commun. (Camb.) 2010, 46, 67.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  C. M. Deane, F. H. Allen, R. Taylor, T. L. Blundell, Protein Eng. 1999, 12, 1025.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmt1agtg%3D%3D&md5=106bdacc29c216f21a6690226386f617CAS |

[7]  R. Carrillo, M. López-Rodríguez, V. S. Martín, T. Martín, CrystEngComm 2010, 12, 3676.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGhtL%2FE&md5=df6c647ec39f8639d0fdc995b8240ec5CAS |

[8]  W. Bolton, Acta Crystallogr. 1963, 16, 166.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXntVeqsA%3D%3D&md5=d4fb03dc0f1cfdf424f563e9e6182ed2CAS |

[9]  W. Bolton, Acta Crystallogr. 1965, 18, 5.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXis1emug%3D%3D&md5=b9c5b15ac240a7cea50a1e8cde058059CAS |

[10]  W. Bolton, Acta Crystallogr. 1964, 17, 147.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXjsFCgsg%3D%3D&md5=04ba91779b32eb65fd304071df8ea4c4CAS |

[11]  R. Taylor, A. Mullaley, G. W. Mullier, Pestic. Sci. 1990, 29, 197.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlvVWqtbo%3D&md5=ef50b42e8df91f7e6cd4230827187c2eCAS |

[12]  A. Gavezzotti, J. Phys. Chem. 1990, 94, 4319.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXit1OjtLw%3D&md5=07c9f33a4a2f941677d48eab3cc9495bCAS |

[13]  F. H. Allen, C. A. Baalham, J. P. M. Lommerse, P. R. Raithby, Acta Crystallogr. B 1998, 54, 320.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  F. R. Fischer, P. A. Wood, F. H. Allen, F. Diederich, Proc. Natl. Acad. Sci. USA 2008, 105, 17290.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWgt7zK&md5=1abdb28da54fc94aab0b5e809d165ba5CAS |

[15]  H. A. Sparkes, P. R. Raithby, E. Clot, G. P. Shields, J. A. Chisholm, F. H. Allen, CrystEngComm 2006, 8, 563.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xns1Cis7s%3D&md5=ef08306ccc53c424db205bb69d631d7fCAS |

[16]  S. Lee, A. B. Mallik, D. C. Fredrickson, Cryst. Growth Des. 2004, 4, 279.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptlGqu7k%3D&md5=a40a5d8d9d6d3a19c0c1c2dca3aedfc6CAS |

[17]  J. Almog, J. E. Baldwin, M. J. Crossley, J. F. Debernardis, R. L. Dyer, J. R. Huff, M. K. Peters, Tetrahedron 1981, 37, 3589.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XhvF2gtbc%3D&md5=e8f8bc63ab059f0c7567eea4f37be795CAS |

[18]  M. Vincenti, J. Mass Spectrom. 1995, 30, 925.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntVemtLY%3D&md5=77893b06e21b17e8ddaf5208f9c26f08CAS |

[19]  P. Tarnowski, W. Danikiewicz, J. Jurczak, Pol. J. Chem. 2004, 78, 927.
         | 1:CAS:528:DC%2BD2cXlvFWltrg%3D&md5=1aa597e21651b3927ab1af4f6bc4db67CAS |

[20]  B. Suchod, J. P. Curtet, D. Djurado, M. Armand, Acta Crystallogr. C 1999, 55, 445.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  G. R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology 1999 (Oxford University Press: New York, NY).

[22]  G. A. Jeffrey, An Introduction to Hydrogen Bonding 1997 (Oxford University Press: New York, NY).

[23]  Since the sheared parallel motif (III) also exhibits only one non-covalent C···O interaction, the authors in [13] viewed that it is reasonable to assume that the interaction energy for motif (III) is similar to that in the perpendicular motif (I). The author also acknowledged the oxygen atoms of the two carbonyl groups in motif (III) are both exposed, hence the oxygen atoms can take part in further interactions to enhance the overall interaction energy, which could be the underlying cause for the slightly greater occurrence of motif (III) compared to motif (I).

[24]  The authors in [13] carried out the IMPT calculations with the torsion angle τ varied from 0° to 90° with fixed D1 and D2 values of 3.02 Å. There was a very small increase in the interaction energies over the range of τ = 0° to 30°, from –22.3 to –19.1 kJ mol–1. However, the energy increases rapidly and becomes repulsive at τ > 70°.

[25]  B. O. Linn, L. M. Paege, P. J. Doherty, R. J. Bochis, F. S. Waksmunski, P. Kulsa, M. H. Fisher, J. Agric. Food Chem. 1982, 30, 1236.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XlvVSru7s%3D&md5=29f323586db7819b1731e8c97e9a0c20CAS |

[26]  Bruker APEX2 Suite 2007 (Bruker AXS Inc.: Madison, WI).

[27]  G. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
         | Crossref | GoogleScholarGoogle Scholar |