Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Structure Correlation Study of the Beckmann Rearrangement: X-ray Structural Analysis and 13C–13C 1-Bond Coupling Constant Study of a Range of Cyclohexanone Oxime Derivatives*

Shin Dee Yeoh A , Benjamin L. Harris A , Tristan J. Simons A and Jonathan M. White A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry and BIO-21 Institute, University of Melbourne, Parkville, Vic. 3010, Australia.

B Corresponding author. Email: whitejm@unimelb.edu.au

Australian Journal of Chemistry 65(7) 905-917 https://doi.org/10.1071/CH12079
Submitted: 6 February 2012  Accepted: 22 March 2012   Published: 18 July 2012

Abstract

The X-ray structures of a range of oxime derivatives (1 and 4), of cyclohexanone and 4-tert-butylcyclohexanone, where the electron demand of the oxygenated substituent on the oxime nitrogen (OR) is systematically varied were determined. It was established that as the OR group becomes more electron demanding, then the N–OR bond distance increases, consistent with the early stages of bond breakage. Concomitant with this structural effect was a noticeable closing up of the N1–C1–C2 bond angle, consistent with the early stages of migration of the antiperiplanar carbon onto the nitrogen substituent. These structural effects are consistent with the manifestation of the early stages of the Beckmann rearrangement in the ground state structures of these oxime derivatives. The carbon–carbon bond distances of the participating carbons in this rearrangement, however, did not vary in a systematic way with the electron demand of the OR substituent, suggesting that the structural effects are too small to be detected using X-ray crystallography. However, the 13C–13C 1-bond coupling constants, which are sensitive to the effects of hyperconjugation, were shown to vary in a systematic way with the electron demand of the OR substituent. Structural effects in the oxime 5 derivatives of 2,2-dimethylcyclohexanone, a substrate that is prone to Beckmann fragmentation rather than Beckmann rearrangement, were similar but smaller in magnitude.


References

[1]  (a) H. B. Burgi, J. D. Dunitz, E. Shefter, J. Am. Chem. Soc. 1973, 95, 5065.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXkvFWhs7w%3D&md5=28006d7b5bff1790ff5246adfde6a3e9CAS |
         (b) Structure Correlation, ed. H. B. Burgi and J. D. Dunitz, 1994, vol. 1 and 2 (Verlag Chemie: Weinheim).

[2]  (a) F. H. Allen, R. Mondalb, N. A. Pitchford, J. A. K. Howard, Helv. Chim. Acta 2003, 86, 1129.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjslGltrg%3D&md5=ad541eb5cf2a73a361f520835a1d7299CAS |
      (b) T. P. E. A. Derheyde, L. R. Nassimbeni, Acta Cryst. A 1984, 40, SC104.

[3]  V. Ferretti, V. Bertolasi, P. Gilli, G. Gilli, Phys. Chem. Chem. Phys. 1999, 1, 2303.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXis1Kjt78%3D&md5=25f32fb9dcb5cf0e983e34c7bb64ff5fCAS |

[4]  S. A. Jackson, O. Eisenstein, J. D. Martin, A. C. Albeniz, R. H. Crabtree, Organometallics 1991, 10, 3062.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltlKgtL0%3D&md5=8062b70210438e8990317e1bdbd8ac8bCAS |

[5]  L.-K. Liu, C.-H. Sun, C.-Z. Yang, Y.-S. Wen, C.-F. Wu, S.-S. Shih, K.-S. Lin, Organometallics 1992, 11, 972.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XotlylsA%3D%3D&md5=e4d1765fa0fb8444c7ef27dd2e284588CAS |

[6]  (a) T. Auf der Heyde, Angew. Chem. Int. Ed. Engl. 1994, 33, 823.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) S. N. Tandura, S. N. Gurkova, A. I. Gusev, N. V. Alekseev, Zh. Strukt. Khim 1985, 136.

[7]  (a) A. R. Bassindale, D. J. Parker, P. G. Taylor, N. Auner, B. Herrschaft, J. Organomet. Chem. 2003, 667, 66.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptFehsQ%3D%3D&md5=92f994317978c659f1fdd9c4bfcd02f7CAS |
      (b) G. Klebe, J. Organomet. Chem. 1985, 293, 147.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  A. G. Orpen, I. D. Salter, Organometallics 1991, 10, 111.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktlSrsQ%3D%3D&md5=98e0cb1b5beba2763d3624f530307c75CAS |

[9]  (a) D. J. Hankinson, J. Almloef, K. R. Leopold, J. Phys. Chem. 1996, 100, 6904.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitVejsLs%3D&md5=23720cd063fb24c07e40a91ecc1854b3CAS |
      (b) M. A. Dvorak, R. S. Ford, R. D. Suenram, F. J. Lovas, K. R. Leopold, J. Am. Chem. Soc. 1992, 114, 108.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) M. Kaftory, D. A. Nugiel, S. E. Biali, Z. Rappoport, J. Am. Chem. Soc. 1989, 111, 8181.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlslehur0%3D&md5=b213e181a59ebfa0a1cdd0c4d2061017CAS |
      (b) G. A. Sim, Acta Crystallogr. B 1990, 46, 676.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Z. Rappoport, S. E. Biali, M. Kaftory, J. Am. Chem. Soc. 1990, 112, 7742.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) D. Birney, T. K. Lim, J. Peng, B. R. Pool, J. M. White, J. Am. Chem. Soc. 2002, 124, 5091.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVOmtrY%3D&md5=1ecb3ab9096bc2fedf07c5aff5f5fc40CAS |
      (b) B. R. Pool, J. M. White, Org. Lett. 2000, 2, 3505.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. W. Goh, J. M. White, Aust. J. Chem. 2009, 62, 419.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Y. W. Goh, B. R. Pool, J. M. White, J. Org. Chem. 2008, 73, 151.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) Y. W. Goh, J. M. White, Org. Biomol. Chem. 2007, 5, 2354.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) Y. W. Goh, S. M. Danczak, T. K. Lim, J. M. White, J. Org. Chem. 2007, 72, 2929.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) J. Roth-Barton, Y. W. Goh, A. Karnezis, J. M. White, Aust. J. Chem. 2009, 62, 407.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) J. Roth-Barton, J. M. White, Aust. J. Chem. 2009, 62, 1695.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  Y. W. Goh, J. M. White, Org. Biomol. Chem. 2005, 3, 972.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  H.-X. Wei, C. Zhou, S. Ham, J. M. White, D. M. Birney, Org. Lett. 2004, 6, 4289.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos1Kmtrc%3D&md5=a263dbd372c3526f11b517f753e9beccCAS |

[14]  (a) M. R. Edwards, P. G. Jones, A. J. Kirby, J. Am. Chem. Soc. 1986, 108, 7067.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XlslWntbs%3D&md5=26e6c825418646bde968537c4bccc87aCAS |
      (b) P. G. Jones, A. J. Kirby, J. Am. Chem. Soc. 1984, 106, 6207.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) P. G. Jones, M. R. Edwards, A. J. Kirby, Acta Crystallogr. C 1986, 42, 1230.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) M. R. Edwards, A. J. Kirby, P. R. Raithby, P. G. Jones, Acta Crystallogr. C 1987, 43, 300.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  R. Gawley, Beckman Reactions in Organic Reactions, 1988, pp. 1–420 (Hoboken, NJ).

[17]  W. J. Bailey, M. Madoff, J. Am. Chem. Soc. 1954, 76, 2707.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2MXkvFaktA%3D%3D&md5=04cb75d58f6973e1da37c5c8a3fd3cbcCAS |

[18]  D. R. Lide, CRC Handbook of Chemistry and Physics, 79th Ed., 1998 (CRC Press LLC: Florida).

[19]  J. A. Dean, Lange's Handbook of Chemistry, 14th Ed., 1992 (McGraw-Hill: New York).

[20]  J. F. King, Sulphonic Acids, Esters and Their Derivatives, Chap. 6, 1991, pp. 249–259 (John Wiley & Sons: New York).

[21]  F. J. Hoogesteger, L. W. Jenneskins, H. Kooijman, N. Veldman, A. L. Spek, Tetrahedron 1996, 52, 1773.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XosVaqsw%3D%3D&md5=cc33825f5d160f7eab65fb44effc1747CAS |

[22]  C. Glidewell, J. N. Low, J. M. S. Skakle, J. L. Wardell, Acta Crystallogr. C 2004, 60, 270.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  M. Lutz, A. L. Spek, R. Dabiron, C. A. von Walree, L. W. Jenneskens, Acta Crystallogr. C 2004, 60, 127.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  (a) R. J. Gillespie, J. Chem. Educ. 1963, 40, 295.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXktFaisLk%3D&md5=2f67e69a13ee2ae75847959731ac76acCAS |
      (b) R. J. Gillespie, Ed. Quim. 2006, 17, 264.
      (c) R. J. Gillespie, Coord. Chem. Rev. 2008, 252, 1315.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  (a) A. J. Briggs, R. Glenn, P. G. Jones, A. J. Kirby, P. Ramaswamy, J. Am. Chem. Soc. 1984, 106, 6200.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXlslShtr8%3D&md5=f7cdb0e00b808a006baef3aa26218455CAS |
      (b) R. D. Amos, N. C. Handy, P. G. Jones, A. J. Kirby, J. K. Parker, J. M. Percy, M. D. Su, J. Chem. Soc., Perkin Trans. 2 1992, 549.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) B. R. Pool, J. M. White, P. P. Wolynec, J. Org. Chem. 2000, 65, 7595.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) W. Jackson, J. M. White, Aust. J. Chem. 2008, 61, 956.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) A. J. Green, J. Giordano, J. M. White, Aust. J. Chem. 2000, 53, 285.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  J. M. White, M. Spiniello, Org. Biomol. Chem. 2003, 1, 3094.

[27]  (a) C. J. Unkefer, R. E. London, T. W. Whaley, G. H. Daub, J. Am. Chem. Soc. 1983, 105, 733.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXovVOjuw%3D%3D&md5=416deda612897d777e032cc2b85a72cdCAS |
      (b) P. E. Hansen, Annu. Rep. NMR Spectrosc. 1981, 11A, 65.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. E. Hansen, O. K. Poulsen, A. Berg, Org. Magn. Reson. 1979, 12, 43.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. L. Marshall, A. M. Ihrig, D. E. Miller, J. Magn. Reson. 1974, 16, 439.
      (e) S. Berger, K. P. Zeller, J. Chem. Soc. D 1975, 423.

[28]  G. R. Jones, S. Caldarelli, P. Vogel, Helv. Chim. Acta 1997, 80, 59.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhsFWisbg%3D&md5=bea2cd54e99fd81bbd187cda7af3c55eCAS |

[29]  (a) R. R. Fraser, R. Capoor, J. W. Bovenkamp, B. V. Lacroix, J. Pagotto, Can. J. Chem. 1983, 61, 2616.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXmtFWrsbk%3D&md5=932b3e20fbd0279b90760aaa85cd7ad7CAS |
      (b) L. B. Krivdin, G. A. Kalabin, R. N. Nesterenko, B. A. Trofimov, Tetrahedron Lett. 1984, 25, 4817.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. B. Krivdin, G. A. Kalabin, Prog. Nucl. Magn. Reson. Spectrosc. 1989, 21, 293.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) F. J. Hoogesteger, D. M. Grove, L. W. Jenneskens, T. J. M. de Bruin, B. A. J. Jansen, J. Chem. Soc., Perkin Trans. 2 1996, 2327.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  N. A. Shcherbina, N. V. Istomina, L. B. Krivdin, Zh. Org. Khim 2005, 41, 1127.

[31]  G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  L. J. Farrugia, J. Appl. Cryst. 1997, 30, 565.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnt1KgsLg%3D&md5=631f2e5f27cc94401b67d1297e3db297CAS |

[33]  L. J. Farrugia, J. Appl. Cryst. 1999, 32, 837.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsVSlurk%3D&md5=a99bb00e596a61480b8be4159291b3beCAS |

[34]  G. N. Barber, R. A. Olofson, J. Org. Chem. 1978, 43, 3015.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXkslGgtL4%3D&md5=413acd48a75eacb5c160fcd29721e5bbCAS |