Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT (Open Access)

Towards Hydrogen Energy: Progress on Catalysts for Water Splitting

Gerhard F. Swiegers A D , Douglas R. MacFarlane B D , David L. Officer A D , Amy Ballantyne A , Danijel Boskovic A , Jun Chen A , G. Charles Dismukes C , Graeme P. Gardner C , Rosalie K. Hocking B , Paul F. Smith C , Leone Spiccia B , Pawel Wagner A , Gordon G. Wallace A , Bjorn Winther-Jensen B and Orawan Winther-Jensen B
+ Author Affiliations
- Author Affiliations

A Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW 2522, Australia.

B ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, Vic. 3800, Australia.

C Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.

D Corresponding authors. Email: Swiegers@uow.edu.au; Douglas.MacFarlane@monash.edu; DavidO@uow.edu.au




Gerry Swiegers is a Professor in the Intelligent Polymer Research Institute at the University of Wollongong. He is also an adjunct fellow of the ARC-funded Australian Centre for Electromaterials Science (ACES). His interests span bioinspired catalysis. He has been responsible for illuminating important fundamental aspects of chemical and biological catalysis.



Douglas MacFarlane is an ARC Federation Fellow at Monash University. He is also the program leader of the Energy Program in the ARC-funded Australian Centre for Electromaterials Science (ACES). His research interests include the development of ionic liquids for use in catalysis and energy storage.



David Officer is Professor of Organic Chemistry in the Intelligent Polymer Research Institute and the ARC Centre of Excellence in Electromaterials Science at the University of Wollongong, Wollongong, Australia (ACES). His research interests are in the areas of porphyrin and conducting polymer chemistry, nanomaterials, solar cells, and artificial photosynthesis.

Australian Journal of Chemistry 65(6) 577-582 https://doi.org/10.1071/CH12048
Submitted: 30 January 2012  Accepted: 12 March 2012   Published: 27 April 2012

Abstract

This article reviews some of the recent work by fellows and associates of the Australian Research Council Centre of Excellence for Electromaterials Science (ACES) at Monash University and the University of Wollongong, as well as their collaborators, in the field of water oxidation and reduction catalysts. This work is focussed on the production of hydrogen for a hydrogen-based energy technology. Topics include: (1) the role and apparent relevance of the cubane-like structure of the Photosystem II Water Oxidation Complex (PSII-WOC) in non-biological homogeneous and heterogeneous water oxidation catalysts, (2) light-activated conducting polymer catalysts for both water oxidation and reduction, and (3) porphyrin-based light harvesters and catalysts.


References

[1]  W. Ruettinger, C. Campana, G. C. Dismukes, J. Am. Chem. Soc. 1997, 119, 6670.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktlKjsbc%3D&md5=128a11932348dada8a9992d4821be67eCAS |

[2]  (a) W. Ruettinger, M. Yagi, K. Wolf, S. Bernasek, G. C. Dismukes, J. Am. Chem. Soc. 2000, 122, 10353.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntVOmurw%3D&md5=2e8eb4f89994b418ec1d9bc5a2c654aaCAS |
      (b) M. Yagi, K. V. Wolf, P. J. Baesjou, S. L. Bernasek, G. C. Dismukes, Angew. Chem. Int. Edit. 2001, 40, 2925.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) R. Breslow, Acc. Chem. Res. 1995, 28, 146.and references therein
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjvFOmtrc%3D&md5=36e4dcfd884de73966856f77aaabe4c0CAS |
      (b) R. Breslow, Chem. Soc. Rev. 1972, 1, 553.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber, S. Iwata, Science 2004, 303, 1831.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitFehtbs%3D&md5=031fd950c39696f610bd2aa132128886CAS |

[5]  (a) B. Loll, J. Kern, W. Saenger, A. Zouni, J. Biesiadka, Nature 2005, 438, 1040.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSksrvK&md5=3f186e8cfe16b272f8cbaa8a9d2a7501CAS |
      (b) J. Yano, J. Kern, K.-D. Irrgang, M. J. Latimer, U. Bergmann, P. Glatzel, Y. Pushkar, J. Biesiadka, B. Loll, K. Sauer, J. Messinger, A. Zouni, V. K. Yachandra, Proc. Natl. Acad. Sci. USA 2005, 102, 12047.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, Nature 2011, 473, 55.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslCmtLg%3D&md5=f7b48594fae4a870a2b3d1c7ed10df43CAS |

[7]  G. F. Swiegers, J. K. Clegg, R Stranger, Chem. Sci. 2011, 2, 2254.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12isrvL&md5=2bb497c792c79a23dde60032a1b3c096CAS |

[8]  M. W. Kanan, D. G. Nocera, Science 2008, 321, 1072.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSitrbP&md5=4d554995a8442318e37fd3fd4f64344fCAS |

[9]  F. Jiao, H. Frei, Angew. Chem. Int. Edit. 2009, 48, 1841.and references therein
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1Ojurg%3D&md5=b59158f7a83e71611fb56eadfee37230CAS |

[10]  R. K. Hocking, R. Brimblecombe, L.-Y. Chang, A. Singh, M. H. Cheah, C. Glover, W. H. Casey, L. Spiccia, Nat. Chem. 2011, 3, 461.
         | 1:CAS:528:DC%2BC3MXmtV2htL0%3D&md5=e1a1da8eed8e7449a5936fba7038db72CAS |

[11]  Q. Yin, J. M. Tan, C. Besson, Y. V. Geletti, D. Musaev, A. E. Kuznetsov, Z. Luo, K. I. Hardcastle, C. L. Hill, Science 2010, 328, 342.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks1Sgtbs%3D&md5=31262becc276064b39f67eb7a54d16e6CAS |

[12]  D. M. Robinson, Y. B. Go, M. Greenblatt, G. C. Dismukes, J. Am. Chem. Soc. 2010, 132, 11467.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsV2ms7o%3D&md5=5bba10d3a2970acbecbbb6d9be882cc3CAS |

[13]  (a) N. McCool, D. M. Robinson, J. E. Sheats, G. C. Dismukes, J. Am. Chem. Soc. 2011, 133, 11446.See also;
         | 1:CAS:528:DC%2BC3MXovVegsb8%3D&md5=672c446513e213b2f413c709c7a7b3ccCAS |
      (b) G. La Ganga, F. Puntoriero, S. Campagna, I. Bazzan, S. Berardi, M. Bonchio, A. Sartorel, M. Natali, F. Scandola, Faraday Discuss. 2012, 155, 177.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  G. F. Swiegers, Mechanical Catalysis 2008 (John Wiley and Sons: New York, NY).

[15]  G. P Gardner, Y. B. Go, D. M. Robinson, P. F. Smith, J. Hadermann, A. Abakumov, M. Greenblatt, G. C. Dismukes, Angew. Chem. Int. Edit. 2012, 51, 1616.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xksl2msQ%3D%3D&md5=0dda1fc0b9376f4ac2506a3b3da998feCAS |

[16]  Y. Shao-Horn, S. A. Hackney, C. S. Johnson, A. J. Kahaian, M. M. Thackeray, J. Solid State Chem. 1998, 140, 116.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsVyrsb8%3D&md5=e7b29378edc2a3ddf239f3582ec2589eCAS |

[17]  S. Choi, A. Manthiram, J. Solid State Chem. 2002, 164, 332.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xit1CjsL8%3D&md5=23221049d293bb645fb2daddf3f0e321CAS |

[18]  Y. Shao-Horn, S. A. Hackney, A. J. Kahaian, M. M. Thackeray, J. Solid State Chem. 2002, 168, 60.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xos1yjs7o%3D&md5=cc719e459bcf3b1204c56156278805abCAS |

[19]  H. Gabrisch, R. Yazami, B. Fultz, J. Electrochem. Soc. 2004, 151, A891.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktVGkt7s%3D&md5=49e15ec7c564f62c11b0a7994d328121CAS |

[20]  G. C. Dismukes, R. Brimblecombe, G. A. N. Felton, R. S. Pryadun, J. E. Sheats, L. Spiccia, G. F. Swiegers, Acc. Chem. Res. 2009, 42, 1935.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSgtb%2FL&md5=7ee1e63bbf20e924e0a4d165bd1f212dCAS |

[21]  S. Vivekanandhan, M. Venkateswarlu, N. Satyanarayana, J. Alloy. Comp. 2007, 441, 284.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFCitrs%3D&md5=ec3818e7f94aeaf0cfb8d7af5291adb6CAS |

[22]  B. Garcia, P. Barboux, F. Ribot, A. Kahn-Harari, L. Mazerolles, N. Baffier, Solid State Ion. 1995, 80, 111.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotVegtr4%3D&md5=d5c0c2dd75c31e0f5750fab68433197aCAS |

[23]  J. Suntivich, H. A. Gasteiger, N. Yabuuchi, Y. Shao-Horn, J. Electrochem. Soc. 2010, 157, B1263.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1GktrY%3D&md5=3b5e0d8ea99e65ad9c0d4c5ced580289CAS |

[24]  B. Winther-Jensen, O. Winther-Jensen, M. Forsyth, D. R. MacFarlane, Science 2008, 321, 671.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVKnur0%3D&md5=6405cbf71e4202e9333a8633a05a3fd2CAS |

[25]  B. Winther-Jensen, D. R. MacFarlane, Energy. Environ. Sci. 2011, 4, 279.

[26]  B. Winther-Jensen, K. Fraser, C. Ong, M. Forsyth, D. R. MacFarlane, Adv. Mater. (Deerfield Beach Fla.) 2010, 22, 1727.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltVyqtL8%3D&md5=fed2082535042c822df0cad820d70908CAS |

[27]  O. Winther-Jensen, B. Winther-Jensen, D. R. MacFarlane, Electrochem. Commun. 2011, 13, 307.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFentLw%3D&md5=1d5be92d4a66f0ad77ad12c043de1caeCAS |

[28]  O. Winther-Jensen, B. Winther-Jensen, D. MacFarlane, Heterojunction Electrocatalyst, PCT patent application 2011.

[29]  D. Gust, T. A. Moore, A. L. Moore, Acc. Chem. Res. 2009, 42, 1890.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyrtrnN&md5=31f8f2b6799f2b3c146caed304bb4212CAS |

[30]  K. Kalyanasundaram, M. Grätzel, Curr. Opin. Biotechnol. 2010, 21, 298.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslOht7w%3D&md5=0331f6b70ac7084cd92b8e321d959002CAS |

[31]  W. M. Campbell, K. W. Jolley, P. Wagner, K. Wagner, P. J. Walsh, K. C. Gordon, L. Schmidt-Mende, M. K. Nazeeruddin, Q. Wang, M. Grätzel, D. L. Officer, J. Phys. Chem. C 2007, 111, 11760.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvVShtbw%3D&md5=3f4f2ef87d01218b1160c84d155ff6dcCAS |

[32]  A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, M. Grätzel, Science 2011, 334, 629.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyqu7nI&md5=e133a1a57aae1b4de8c382af9246514dCAS |

[33]  A. J. Mozer, M. J. Griffith, G. Tsekouras, P. Wagner, G. G. Wallace, S. Mori, K. Sunahara, M. Miyashita, J. C. Earles, K. C. Gordon, L. Du, R. Katoh, A. Furube, D. L. Officer, J. Am. Chem. Soc. 2009, 131, 15621.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Gju7%2FL&md5=78166dcdbad26fa0a5541a06e880914cCAS |

[34]  W. Szulbinski, J. W. Strojek, Inorg. Chim. Acta 1986, 118, 91.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXktFeltg%3D%3D&md5=496410b0808644cf357c39aab5a8aa54CAS |

[35]  J. Davila, A. Harriman, M. C. Richoux, L. R. Milgrom, J. Chem. Soc. Chem. Commun. 1987, 525.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitFKqs7s%3D&md5=1a6934fbd94d6745089ea03cb91138d4CAS |

[36]  W. Kim, T. Tachikawa, T. Majima, C. Li, H.-J. Kim, W. Choi, Energy. Environ. Sci. 2010, 3, 1789.
         | 1:CAS:528:DC%2BC3MXivF2ns7o%3D&md5=a8957b277286ecdedf9393f3a6054a08CAS |

[37]  J. Chen, J. Huang, G. F. Swiegers, C. O. Too, G. G. Wallace, Chem. Commun. 2004, 308.

[38]  G. F. Moore, J. D. Blakemore, R. L. Milot, J. F. Hull, H.-E. Song, L. Cai, C. A. Schmuttenmaer, R. H. Crabtree, G. W. Brudvig, Energy. Environ. Sci. 2011, 4, 2389.
         | 1:CAS:528:DC%2BC3MXhtFWrtr3E&md5=07a0b8e1f2374f3a090f0d3b17e64c71CAS |

[39]  Y. Naruta, M.-A. Sasayama, T. Sasaki, Angew. Chem. Int. Edit. 1994, 33, 1839.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  J. Chen, P. Wagner, L. Tong, G. G. Wallace, D. L. Officer, G. F. Swiegers, Angew. Chem. Int. Edit. 2012, 51, 1907.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFaisrs%3D&md5=f236c2c4e2527e75d0a88c92b5b60de0CAS |