The Nucleophilic Addition of β-Lactam Carbenes to Alkylphenylketenes for a Ready Approach to Spiro[β-lactam-2,1′-indene] Derivatives
Yong-Jia Li A , Cai-Xia Yan A , Zhong-Xin Sun A and Ying Cheng A B
+ Author Affiliations
- Author Affiliations
A College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
B Corresponding author. Email: ycheng2@bnu.edu.cn
Australian Journal of Chemistry 65(4) 417-426 https://doi.org/10.1071/CH12046
Submitted: 26 January 2012 Accepted: 24 February 2012 Published: 26 April 2012
Abstract
The nucleophilic reaction of ambident β-lactam carbenes with alkylphenylketenes is studied, which produces two types of spiro[β-lactam-2,1′-indene] derivatives in total yields of 55–89 %. This work not only provides the first example that ambident carbenes behave with high activity towards ketenes, but also developes the application of β-lactam carbenes in the construction of spiro-β-lactam compounds.
References
[1] (a) Chemistry and Biology of β-Lactam Antibiotics; (Eds R. B. Morin, M. Gorman), 1982, Vol. 1–3 (Academic: New York).(b) W. Dürckheimer, J. Blumbach, R. Lattrell, K. H. Scheunemann, Angew. Chem. Int. Ed. Engl. 1985, 24, 180.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. S. Singh, Mini Rev. Med. Chem. 2004, 4, 93.
| Crossref | GoogleScholarGoogle Scholar |
(d) G. S. Singh, Mini Rev. Med. Chem. 2004, 4, 69.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) I. Ojima, Acc. Chem. Res. 1995, 28, 383.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXns1Cjur8%3D&md5=995862b7458e74a967a0c757942fc335CAS |
(b) I. Ojima, F. Delaloge, Chem. Soc. Rev. 1997, 26, 377.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. Alcaide, P. Almendros, Curr. Med. Chem. 2004, 11, 1921.
(d) A. R. A. S. Deshmukh, B. M. Bhawal, D. Krishnaswamy, V. V. Govande, B. A. Shinkre, A. Jayanthi, Curr. Med. Chem. 2004, 11, 1889.
(e) A. Zanobini, M. Gensini, J. Magull, D. Vidovic, S. I. Kozhushkov, A. Brandi, A. de Meijere, Eur. J. Org. Chem. 2004, 4158.
| Crossref | GoogleScholarGoogle Scholar |
[3] J. D. Rothstein, S. Patel, M. R. Regan, C. Haenggeli, Y. H. Huang, D. E. Bergles, L. Jin, M. D. Hoberg, S. Vidensky, D. S. Chung, S. V. Toan, L. I. Bruijn, Z. Z. Su, P. Gupta, P. B. Fisher, Nature 2005, 433, 73.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXovFer&md5=f292e7e1cb18fac63c73c5e22c61f593CAS |
[4] T. Sperka, J. Pitlik, P. Bagossi, J. Toezser, Bioorg. Med. Chem. Lett. 2005, 15, 3086.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFWgur8%3D&md5=c9b6ee2754dbe4cd39fbda8539d923e1CAS |
[5] S. Gerard, M. Galleni, G. Dive, J. Marchand-Brynaert, L. Batiment, Bioorg. Med. Chem. 2004, 12, 129.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVSjtLbF&md5=3dfc0c3f69c6e84182658abef0488444CAS |
[6] S. S. Bari, A. Bhalla, Top. Heterocycl. Chem. 2010, 22, 49.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1agtLfK&md5=41dccd159758422c38c7da135a8aff31CAS |
[7] (a) G. S. Singh, T. Singh, R. Lakhan, Indian J. Chem. B 1997, 36B, 951.
| 1:CAS:528:DyaK1cXltlCnsA%3D%3D&md5=fd62edcb6e868c370fabd278f4be96afCAS |
(b) G. S. Singh, N. Siddiqui, S. N. Pandeya, Boll. Chim. Farm. 1994, 133, 76.
[8] R. Kumar, S. N. Giri, J. Agric. Food Chem. 1989, 37, 1094.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksFagtr8%3D&md5=b8ca00d31d1ded9d30d8ad496fd01568CAS |
[9] J. W. Skiles, D. McNeil, Tetrahedron Lett. 1990, 31, 7277.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtVWls7g%3D&md5=a85543ae82f272921eba1ccd5d5e2bf7CAS |
[10] K. C. Joshi, R. Jain, V. Sharma, J. Indian Chem. Soc. 1986, 63, 430.
| 1:CAS:528:DyaL2sXktVOju7s%3D&md5=8660fa5da08acadecabab7aa654d19b2CAS |
[11] F. Benfatti, G. Cardillo, L. Gentilucci, A. Tolomelli, Bioorg. Med. Chem. Lett. 2007, 17, 1946.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis1Ogu7c%3D&md5=8f70b9e78aff0cbfdbefbad484a18981CAS |
[12] J. Zhuo, D.-Q. Qian, W. Yao, US Patent 20070129345 2007; Chem. Abstr. 2007, 147, 52820.
[13] B. Alcaide, P. Almendros, Top. Heterocycl. Chem. 2010, 22, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1agtLfJ&md5=73673d1b3e34a87756a1a6459a709104CAS |
[14] (a) Z. Xu, K. Huang, T. Liu, M. Xie, H. Zhang, Chem. Commun. 2011, 47, 4923.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslKhs7c%3D&md5=21d0352f219f27aa8f49079f8670cb83CAS |
(b) R. Arora, P. Venugopalan, S. S. Bari, J. Chem. Sci. 2010, 122, 125.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. Benfatti, G. Cardillo, L. Gentilucci, A. Tolomelli, Eur. J. Org. Chem. 2007, 3199.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Bhalla, P. Venugopalan, S. S. Bari, Eur. J. Org. Chem. 2006, 4943.
| Crossref | GoogleScholarGoogle Scholar |
(e) H. Bittermann, P. Gmeiner, J. Org. Chem. 2006, 71, 97.
| Crossref | GoogleScholarGoogle Scholar |
(f) J. Robertson, S. J. Bell, A. Krivokapic, Org. Biomol. Chem. 2005, 3, 4246.
| Crossref | GoogleScholarGoogle Scholar |
[15] J. H. Rigby, Z. Wang, Org. Lett. 2003, 5, 263.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotlan&md5=57a932b28f8ff6ac9ae0e76136e167f9CAS |
[16] J. D. Colomvakos, I. Egle, J. Ma, D. L. Pole, T. T. Tidwell, J. Warkentin, J. Org. Chem. 1996, 61, 9522.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xntleqsrw%3D&md5=006f8fe8375f9a04313d1673fea9a022CAS |
[17] R. W. Hoffmann, W. Lilienblum, B. Dittrich, Chem. Ber. 1974, 107, 3395.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXls12nt7Y%3D&md5=7704de7f780061c304cef639ca2e7c5bCAS |
[18] (a) M. Zoghbi, J. Warkentin, J. Org. Chem. 1991, 56, 3214.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkt1yqsbc%3D&md5=10b0f1715bd0b2aca51971d4d0ef0028CAS |
(b) M. Zoghbi, J. Warkentin, Can. J. Chem. 1993, 71, 912.
| Crossref | GoogleScholarGoogle Scholar |
[19] (a) M. Zoghbi, J. Warkentin, Can. J. Chem. 1992, 70, 2967.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXotVKkuw%3D%3D&md5=0c5511fc8fc1d44959eabd321f934bc4CAS |
(b) M. Zoghbi, S. E. Horne, J. Warkentin, J. Org. Chem. 1994, 59, 4090.
| Crossref | GoogleScholarGoogle Scholar |
[20] Y. Cheng, B. Wang, L.-Q. Cheng, J. Org. Chem. 2006, 71, 4418.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFWis70%3D&md5=d648dbc65ad0ab357e35e06ae5fecf2dCAS |
[21] J. Xing, X.-R. Wang, C.-X. Yan, Y. Cheng, J. Org. Chem. 2011, 76, 4746.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlslSktrw%3D&md5=a5fb92ea9cc8588eac7364728da1bef2CAS |
[22] Y. Cheng, L.-Q. Cheng, J. Org. Chem. 2007, 72, 2625.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVSitbw%3D&md5=6ee51b7f3bc9551c665290df2de8bf99CAS |
[23] L.-Q. Cheng, Y. Cheng, Tetrahedron 2007, 63, 9359.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptVWqtb4%3D&md5=39c9f30e167afb85b18f548424651343CAS |
[24] CCDC nos 843134, 843135, 847936, 847937, and 843136 contain the supplementary crystallographic data for 4b-I, 4m-I, 4m-II, 4n-I, and 5h-II described in this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre by www.ccdc.cam.ac.uk/data_request/cif.