Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Design of Clathrate Compounds that Use Only Weak Intermolecular Attractions

Roger Bishop
+ Author Affiliations
- Author Affiliations

School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia. Email: r.bishop@unsw.edu.au




Roger Bishop was educated at George Heriot’s School in Edinburgh, the University of St. Andrews (B.Sc.), and the University of Cambridge where he carried out his Ph.D. work on the photochemistry of alpha-diketones. In 1974, he took up a Lectureship in the School of Chemistry, University of New South Wales, Sydney, where he is now an Emeritus Professor. His principal research interests lie in the areas of alicyclic chemistry, organic inclusion compounds, and crystal engineering.

Australian Journal of Chemistry 65(10) 1361-1370 https://doi.org/10.1071/CH12038
Submitted: 24 January 2012  Accepted: 1 March 2012   Published: 27 April 2012

Abstract

Intermolecular attractive forces that are considerably weaker than hydrogen bonding and coordination complexation may be used in the design of new molecules that function as host molecules in the solid-state. Known literature examples of accidentally discovered hosts (clathrands), which do not involve strong interactions in their crystals, are identified and discussed. Their molecular symmetry and supramolecular interactions are analysed in order to identify structural features that facilitate and promote molecular inclusion. The solid-state properties of a family of designed compounds that embody these principles are then described. Prediction of their inclusion behaviour was 95 % successful and a wide variety of crystal packing arrangements were encountered. This is an inevitable consequence of competition between many different molecular interactions of comparable energy during the crystallisation process. The lowest energy combination of these host–host and host–guest associations generates the observed outcome. One consequence of this behaviour is that detailed prediction of a new clathrate crystal packing arrangement is extremely difficult. However, a second consequence is that crystal structure analysis provides a rich source of information about weak intermolecular forces and new supramolecular synthons that previously had remained hidden.


References

[1]  G. R. Desiraju, Crystal Engineering: The Design of Molecular Solids 1989 (Elsevier: Amsterdam).

[2]  G. R. Desiraju, Cryst. Growth Des. 2011, 11, 896.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt1Cqurs%3D&md5=1fdde67d336f9fdfd2783767c3fd6bdeCAS |

[3]  F. H. Herbstein, Crystalline Molecular Complexes and Compounds: Structures and Principles 2005 (Oxford University Press: Oxford).

[4]  L. Mandelcorn, Chem. Rev. 1959, 59, 827.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXls1ah&md5=c060ac63f102866ba609084e2549cd02CAS |

[5]  M. Hagan, Clathrate Inclusion Compounds 1962 (Reinhold: New York).

[6]  J. F. Brown, Sci. Am. 1962, 207, 82.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XksVKjt7w%3D&md5=c4eba5ecb99e2d7acb5e00fef32ee828CAS |

[7]  H. M. Powell, J. Chem. Soc. 1948, 61.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH1cXisVKhtQ%3D%3D&md5=26eb9906b8cac7609b7342a83a2013abCAS |

[8]  H. M. Powell, B. D. P. Wetters, Chem. & IndLondon 1955, 256.
         | 1:CAS:528:DyaG2MXltFOmtA%3D%3D&md5=8eddefbfdc748da277970a81e2d22641CAS |

[9]  D. D. MacNicol, J. J. McKendrick, D. R. Wilson, Chem. Soc. Rev. 1978, 7, 65.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhtVaku7c%3D&md5=98daccfefa93dc584b3caceac408b721CAS |

[10]  D. D. MacNicol, F. Toda, R. Bishop (Eds), Comprehensive Supramolecular Chemistry, Vol. 6 Solid-State Supramolecular Chemistry: Crystal Engineering 1996 (Pergamon: Oxford).

[11]  I. Y. H. Chan, V. T. Nguyen, R. Bishop, D. C. Craig, M. L. Scudder, Cryst. Growth Des. 2010, 10, 4582.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVyrtrzO&md5=3d97ab6efb581bd5d887f8409953a801CAS |

[12]  K. M. Anderson, M. B. Probert, A. E. Goeta, J. W. Steed, CrystEngComm 2011, 13, 83.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFyqtA%3D%3D&md5=ab5db05d072366ce37b9e526becfcdb0CAS |

[13]  D. D. MacNicol, G. R. Downing, Symmetry in the Evolution of Host Design, in Comprehensive Supramolecular Chemistry, Vol. 6 Solid-State Supramolecular Chemistry: Crystal Engineering (Eds D. D. MacNicol, F. Toda, R. Bishop) 1996, ch. 14, pp. 421–464 (Pergamon: Oxford).

[14]  E. Weber, Shape and Symmetry in the Design of New Hosts, in Comprehensive Supramolecular Chemistry, Vol. 6 Solid-State Supramolecular Chemistry: Crystal Engineering (Eds D. D. MacNicol, F. Toda, R. Bishop) 1996 ch. 17, pp. 535–592 (Pergamon: Oxford).

[15]  R. Bishop, Synthetic Clathrate Systems, in Supramolecular Chemistry: From Molecules to Nanomaterials (Eds P. A. Gale, J. W. Steed) 2012, pp. 3033–3056 (Wiley: Chichester).

[16]  G. R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology 1999 (Oxford Science Publications: Oxford).

[17]  G. R. Desiraju, Angew. Chem. Int. Ed. 1995, 34, 2311.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsFOitbw%3D&md5=16d2e1a291937fdcff0d185ef36c6bb4CAS |

[18]  V. T. Nguyen, R. Bishop, I. Y. H. Chan, D. C. Craig, M. L. Scudder, CrystEngComm 2008, 10, 1810.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOktbvE&md5=457e74f2539761ceb60b7337d510f5edCAS |

[19]  R. Bishop, V. T. Nguyen, P. D. Ahn, D. C. Craig, M. L. Scudder, Mol. Cryst. Liq. Cryst. A 2001, 356, 289.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivFOhurk%3D&md5=35b178993e1eaedcc8bc2203e1d80b9aCAS |

[20]  A. D. U. Hardy, D. D. MacNicol, S. Swanson, D. R. Wilson, J. Chem. Soc., Perkin Trans. 2 1980, 999.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXlvVGrtLk%3D&md5=a391889c4bd7959c036d89a1b8abcea7CAS |

[21]  D. D. MacNicol, in Inclusion Compounds Vol. 2 (Eds J. L. Atwood, J. E. D. Davis, D. D. MacNicol) 1994, ch. 5, pp. 123–168 (Academic Press: London).

[22]  M. Nishio, Y. Umezawa, K. Honda, S. Tsuboyama, H. Suezawa, CrystEngComm 2009, 11, 1757.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSksr3M&md5=559a81d01d73dcfde5cba207222a08f9CAS |

[23]  A. Gavezzotti, G. R. Desiraju, Acta Crystallogr. B 1988, 44, 427.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  C. A. Hunter, J. K. M. Sanders, J. Am. Chem. Soc. 1990, 112, 5525.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksVShur8%3D&md5=634f1ddc91b4f85766ab45cd87bac86eCAS |

[25]  A. S. Jessiman, D. D. MacNicol, P. R. Mallinson, I. Vallance, J. Chem. Soc. Chem. Commun. 1990, 1619–1621,
         | Crossref | GoogleScholarGoogle Scholar |

[26]  V. S. S. Kumar, F. C. Pigge, N. P. Rath, CrystEngComm 2004, 6, 531.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvFamur4%3D&md5=3e249c4589acc0fe15627ee4d82d511cCAS |

[27]  A. Kekule, A. Franchimont, Ber. Dtsch. Chem. Ges. 1872, 5, 906.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  L. bin Din, O. Meth-Cohen, J. Chem. Soc., Chem. Commun. 1977, 741.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  I. Dance, M. Scudder, Chem.–Eur. J. 1996, 2, 481.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtF2is78%3D&md5=72c50dab4ef861fab56e211fa6c33b7cCAS |

[30]  M. Scudder, I. Dance, J. Chem. Soc., Dalton Trans. 2000, 2909.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvFOrs7s%3D&md5=4614d94801a750544cefe251b929660bCAS |

[31]  F. Toda, K. Agaki, Tetrahedron Lett. 1968, 9, 3695.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  D. V. Soldatov, J. Chem. Crystallogr. 2006, 36, 747.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVyqtrfE&md5=33c1854775edb595d6a417aeef256aa0CAS |

[33]  C. E. Godinez, G. Zepada, M. A. Garcia-Garibay, J. Am. Chem. Soc. 2002, 124, 4701.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisFalsrs%3D&md5=4ad0bfd3cc66b81726dda7819d8e082eCAS |

[34]  S. L. Price, A. J. Stone, J. Lucas, R. S. Rowland, A. Thornley, J. Am. Chem. Soc. 1994, 116, 4910.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjt1agur8%3D&md5=74a5e99c663cf44bcd9a1f6ecebcfab5CAS |

[35]  C. E. Marjo, R. Bishop, D. C. Craig, A. O’Brien, M. L. Scudder, J. Chem. Soc. Chem. Commun. 1994, 2513.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitFyiur8%3D&md5=7c54edba461af8705116fa3608666928CAS |

[36]  A. N. M. M. Rahman, R. Bishop, D. C. Craig, M. L. Scudder, Org. Biomol. Chem. 2003, 1, 1435.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkt1KrsLk%3D&md5=964f1c23e3fd8b65c7abd6400e2014ffCAS |

[37]  A. Irving, Supramol. Chem. 1997, 8, 267.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXovVSltQ%3D%3D&md5=97115ee9484ac043311ec78d9f4279ccCAS |

[38]  D. Schollmeyer, O. V. Shiskin, T. Ruhl, O. Vysotsky, CrystEngComm 2008, 10, 715.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntVCgt74%3D&md5=7f484b0d3e6c6ab45f991376d0ed1c0fCAS |

[39]  F. H. Allen, C. A. Baalham, J. P. M. Lommerse, P. R. Raithby, Acta Crystallogr. B 1998, 54, 320.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  M. Suzuki, K. Kobayashi, Cryst. Growth Des. 2011, 11, 1814.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1Snu74%3D&md5=0ec274cc08e5d0b4c1ff2c8b19896071CAS |

[41]  C.-Q. Wan, T. C. W. Mak, Cryst. Growth Des. 2011, 11, 832.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ems7o%3D&md5=464c891a5b76cdc2f02969a27351837bCAS |

[42]  R. Paulini, K. Müller, F. Diederich, Angew. Chem. Int. Ed. 2005, 44, 1788.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXislWkt7s%3D&md5=28a6e4bf7b32480bb9a21748bfa2614bCAS |

[43]  K. Manoj, K. M. Sureshan, R. G. Gonnade, M. M. Bhadbhade, M. S. Shashidar, Cryst. Growth Des. 2005, 5, 833.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsF2ntLs%3D&md5=dbc3aa567e37fe929a8189d038d09216CAS |

[44]  M. T. Kirchner, D. Bläser, R. Boese, Chem.–Eur. J. 2010, 16, 2131.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVKqsbY%3D&md5=34bb6454a541a8a46060a4dcd340af29CAS |

[45]  E. Gagnon, A. Rochefort, V. Métivaud, J. D. Wuest, Org. Lett. 2010, 12, 380.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOrtrnN&md5=2cdfc883a7c99c85323e317d2050a104CAS |

[46]  P. Metrangolo, H. Neukirch, T. Pilati, G. Resnati, Acc. Chem. Res. 2005, 38, 386.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitlSitbY%3D&md5=a7b50a3c2edcd0ca5fc42eb5d3a887d2CAS |

[47]  P. Metrangolo, F. Meyer, T. Pilati, G. Resnati, G. Terraneo, Angew. Chem. Int. Ed. 2008, 47, 6114.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvFSgtr8%3D&md5=f60337df01e54efd99bfdae039eb4accCAS |

[48]  C.-Q. Wan, J. Han, T. C. W. Mak, New J. Chem. 2009, 33, 707.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktF2msrc%3D&md5=ed22d3b9f0e7e8bd6f08a3982b13fc97CAS |

[49]  R. Thaimattam, C. V. K. Sharma, A. Clearfield, G. R. Desiraju, Cryst. Growth Des. 2001, 1, 103.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFynt7g%3D&md5=7bec9457e5e1da519527f933c288bdcaCAS |

[50]  S. F. Alshahateet, R. Bishop, D. C. Craig, M. L. Scudder, Cryst. Growth Des. 2011, 11, 4474.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSmt7zI&md5=2fa10cc213b228ccaaabfb010702617eCAS |

[51]  G. R. Desiraju, Acc. Chem. Res. 1991, 24, 290.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmtFGjsbY%3D&md5=b8f35e30845de5fdcdfc4266e227765dCAS |

[52]  A. Gavezzotti, Crystallogr. Rev. 1998, 7, 5.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtVGhtbY%3D&md5=3057cce66785ccc1a48987a842548b4aCAS |

[53]  Z. S. Derewenda, L. Lee, U. Derewenda, J. Mol. Biol. 1995, 252, 248.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotFyhtro%3D&md5=27cc34a012b9c49ff6ee1ce6d70fbaf0CAS |

[54]  B. K. Saha, A. Nangia, Cryst. Growth Des. 2007, 7, 393.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltlansg%3D%3D&md5=34f700a44027b66de4ea769de865c38eCAS |

[55]  K. Reichenbächer, A. Neels, H. Stoeckli-Evans, P. Balasubramaniyan, K. Müller, Y. Matsuo, E. Nakamura, E. Weber, J. Hulliger, Cryst. Growth Des. 2007, 7, 1399.
         | Crossref | GoogleScholarGoogle Scholar |

[56]  T. C. W. Mak, H. N. C. Wong, Tetraphenylene and Related Hosts, in Comprehensive Supramolecular Chemistry, Vol. 6, Solid-State Supramolecular Chemistry: Crystal Engineering (Eds D. D. MacNicol, F. Toda, R. Bishop) 1996, ch. 11, pp. 351–369 (Pergamon: Oxford).

[57]  P. Dastidar, I. Goldberg, Hydrocarbon Hosts: Biaryls, Polyaryls, Allenes, Spiranes, and Cyclophanes, in Comprehensive Supramolecular Chemistry, Vol. 6, Solid-State Supramolecular Chemistry: Crystal Engineering (Eds D. D. MacNicol, F. Toda, R. Bishop) 1996, ch. 10, pp. 305–350 (Pergamon: Oxford).

[58]  E. Weber, W. Seichter, I. Goldberg, Chem. Ber. 1990, 123, 811.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhvFOlu7c%3D&md5=8350e3199eed9f6189b03ca6dd72d134CAS |

[59]  S. Varughese, G. Cooke, S. M. Draper, CrystEngComm 2009, 11, 1505.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSksrbN&md5=5891932b504df05f89bbd14868777062CAS |

[60]  S. Varughese, S. M. Draper, Cryst. Growth Des. 2010, 10, 2571.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFKls7c%3D&md5=c0e7fe1784ce35fd4c2f12a69d3af3aeCAS |

[61]  J. B. Harper, Pyridines and their Benzo Derivatives: Structure, in Comprehensive Heterocyclic Chemistry III (Ed. D. S. Black) 2008, Volume 7, pp. 1–39 (Elsevier: Oxford).

[62]  R. Bishop, Top. Heterocycl. Chem. 2009, 18, 37.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVCrsb0%3D&md5=4543d715d4518ee203074cc23f65c7bcCAS |

[63]  R. Bishop, in The Importance of Pi-Interactions in Crystal Engineering: Frontiers in Crystal Engineering (Eds E. R. T. Tiekink, J. Zukerman-Schpector) 2012, ch. 2, pp. 41–77 (Wiley: Chichester).

[64]  C. E. Marjo, M. L. Scudder, D. C. Craig, R. Bishop, J. Chem. Soc., Perkin Trans. 2 1997, 2099.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvFOgu7w%3D&md5=096541d9ea76eefa591969b76793a5deCAS |

[65]  C. E. Marjo, R. Bishop, D. C. Craig, M. L. Scudder, Eur. J. Org. Chem. 2001, 863.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhs1Ohtb4%3D&md5=6d0704bb2346482801aa0b2bbcf7ee4bCAS |

[66]  S. F. Alshahateet, R. Bishop, D. C. Craig, M. L. Scudder, CrystEngComm 2001, 3, 225.
         | Crossref | GoogleScholarGoogle Scholar |

[67]  S. F. Alshahateet, R. Bishop, D. C. Craig, M. L. Scudder, Cryst. Growth Des. 2004, 4, 837.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1Gis7g%3D&md5=9b6d5067471bcc1cf8fe04fcbd66b14bCAS |

[68]  R. S. Rowland, R. Taylor, J. Phys. Chem. 1996, 100, 7384.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xit1ykt7k%3D&md5=75d83a77739eaa776e4cc56deb7421f9CAS |

[69]  A. N. M. M. Rahman, R. Bishop, D. C. Craig, M. L. Scudder, Chem. Commun. 1999, 2389.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsFersro%3D&md5=cbb545cb9634ee0fb28c7652a69b8595CAS |

[70]  A. N. M. M. Rahman, R. Bishop, D. C. Craig, M. L. Scudder, Eur. J. Org. Chem. 2003, 72.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvVOhuw%3D%3D&md5=d752ac6de7b9b1f8168f626cb300f395CAS |

[71]  C. E. Marjo, A. N. M. M. Rahman, R. Bishop, M. L. Scudder, D. C. Craig, Tetrahedron 2001, 57, 6289.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltlOhsrY%3D&md5=491aeca95a3373cee589a733757eb303CAS |

[72]  K. Tanaka, D. Fujimoto, F. Toda, Tetrahedron Lett. 2000, 41, 6095.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlt1yrsLg%3D&md5=aa8f1935445367a514881b78f3e8898dCAS |

[73]  K. Tanaka, D. Fujimoto, A. Altreuther, T. Oeser, H. Irngartner, F. Toda, J. Chem. Soc., Perkin Trans. 2 2000, 2115.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntlaltrw%3D&md5=001dcef28f50a4c9abc6dd4d9a782e50CAS |

[74]  A. N. M. M. Rahman, R. Bishop, D. C. Craig, M. L. Scudder, Cryst. Growth Des. 2002, 2, 421.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlslynurs%3D&md5=b5849654a848d2346d7a3c2e10f5a0daCAS |

[75]  A. N. M. M. Rahman, R. Bishop, D. C. Craig, M. L. Scudder, CrystEngComm 2003, 5, 422.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtlamtbg%3D&md5=d4ac211d4cddd05ed62af85161393022CAS |

[76]  A. N. M. M. Rahman, R. Bishop, D. C. Craig, M. L. Scudder, Org. Biomol. Chem. 2004, 2, 175.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptleh&md5=d5b1fe5b564300d33627b95fb22eaaf4CAS |

[77]  J. Ashmore, R. Bishop, D. C. Craig, M. L. Scudder, Cryst. Growth Des. 2009, 9, 2742.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltl2hsb0%3D&md5=45e4694d66dd857de095bb6f2f43384aCAS |