Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

N-Heterocyclic Carbene Adducts of Cyclopalladated Ferrocenylpyridazine: Synthesis, Structural Characterization, and Application in α-Arylation of Ketones with Aryl Chlorides

Chen Xu A C , Hong-Mei Li B , Zhi-Qiang Wang A , Wei-Jun Fu A , Yu-Qing Zhang B and Bao-Ming Ji A
+ Author Affiliations
- Author Affiliations

A College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471022, China.

B Henan University of Science and Technology, School of Chemical Engineering and Pharmaceutics, Luoyang, Henan 471003, China.

C Corresponding author. Email: xubohan@163.com

Australian Journal of Chemistry 65(4) 366-370 https://doi.org/10.1071/CH12035
Submitted: 21 January 2012  Accepted: 9 February 2012   Published: 9 March 2012

Abstract

A new ferrocene-based ligand 3-chloro-6-pyridazinylferrocene 1 and its N-heterocyclic carbene adducts 23 were synthesized and characterized by 1H NMR and IR spectroscopy, ESI-MS, and elemental analysis. Additionally, detailed structures of complexes 23 have been determined by single-crystal X-ray analysis. Complex 3 exhibited high catalytic activity for α-arylation of ketones with aryl chlorides. Typically, using 1 mol % catalyst in the presence of 1.5 equivalents of tBuOK as base in dioxane at 100°C provided coupled products in good yields.


References

[1]  M. Palucki, S. L. Buchwald, J. Am. Chem. Soc. 1997, 119, 11108.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnt1Snt74%3D&md5=48e37ec2bbc19f5dbec3609af2148d7dCAS |

[2]  B. C. Hamann, J. F. Hartwig, J. Am. Chem. Soc. 1997, 119, 12382.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsVGm&md5=bd2d02fb3beeada522ce0fc24ef1a02cCAS |

[3]  T. Satoh, Y. Kawamura, M. Miura, M. Nomura, Angew. Chem. Int. Ed. 1997, 36, 1740.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtVSjtbw%3D&md5=da7381ac5ffb56c40301ac22b9af8a42CAS |

[4]  M. Miura, M. Nomura, Top. Curr. Chem. 2002, 219, 211.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xis1alu7k%3D&md5=b8d337f7b53d7f8b4ba675bd98e03488CAS |

[5]  D. A. Culkin, J. F. Hartwig, Acc. Chem. Res. 2003, 36, 234.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsVWgsA%3D%3D&md5=186d5d68cb3e46d05f44538e7d6ac7feCAS |

[6]  F. Bellina, R. Rossi, Chem. Rev. 2010, 110, 1082.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1ehtb4%3D&md5=92486eab130ca32f3ed31ced1c0aa565CAS |

[7]  C. C. C. Johansson, T. J. Colacot, Angew. Chem. Int. Ed. 2010, 49, 676.
         | 1:CAS:528:DC%2BC3cXos1aqsg%3D%3D&md5=c6871977a5f734e5a683f9f8eeafabffCAS |

[8]  J. F. Hartwig, Synlett. 2006, 1283.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVWis7Y%3D&md5=5d3c6b794fb0536f48842fc6467834d1CAS |

[9]  R. Martín, S. L. Buchwald, Angew. Chem. Int. Ed. 2007, 46, 7236.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  G. A. Grasa, T. J. Colacot, Org. Lett. 2007, 9, 5489.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlejsbrN&md5=8040867a5d9d95fb6a9c4c3d4ab594afCAS |

[11]  V. Lavallo, Y. Canac, C. Präsang, B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2005, 44, 5705.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVejs7nK&md5=03d43e432f7b0955709f2e9a1ea7ba29CAS |

[12]  M. S. Viciu, R. F. Germaneau, S. P Nolan, Org. Lett. 2002, 4, 4053.
         | 1:CAS:528:DC%2BD38XnvV2ks7k%3D&md5=b479b2858da38fd1695c5bb123acac71CAS |

[13]  E. A. B. Kantchev, C. J. O’Brien, M. G. Organ, Angew. Chem. Int. Ed. 2007, 46, 2768.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksleitb4%3D&md5=f7340d0df8db0982fa0463f5ba354b83CAS |

[14]  M. S. Viciu, S. P. Nolan, Top. Organomet. Chem. 2005, 14, 241.
         | 1:CAS:528:DC%2BD2MXhtVCltbjJ&md5=5672ae991787fb546bce261608b6517eCAS |

[15]  C. S. Cao, L. L. Wang, Z. Y. Cai, L. Q. Zhang, J. Guo, G. S. Pang, Y. H. Shi, Eur. J. Org. Chem. 2011, 1570.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXis1Oku70%3D&md5=7a9477ef6f7a6a0135b0410219b04548CAS |

[16]  R. B. Bedford, C. S. J. Cazin, D. Holder, Coord. Chem. Rev. 2004, 248, 2283.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVagsLzP&md5=d0a6fb3e02600824c1aad5d45ea94f4dCAS |

[17]  J. Dupont, M. Pfeffer, Palladacycles 2008 (Wiley-VCH: Weinheim).

[18]  R. B. Bedford, M. Betham, M. E. Blake, R. M. Frost, P. N. Horton, M. B. Hursthouse, R. López-Nicolás, Dalton Trans. 2005, 2774.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXns1Wktb0%3D&md5=3ff59f1990450c20e4b70f2336fd227dCAS |

[19]  G. D. Frey, J. Schütz, E. Herdtweck, W. A. Herrmann, Organometallics 2005, 24, 4416.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVymu7k%3D&md5=5b84935090ce3d8cd9d602e0b7469aa8CAS |

[20]  J. Y. Li, M. J. Cui, A. J. Yu, Y. J. Wu, J. Organomet. Chem. 2007, 692, 3732.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnslKlu7c%3D&md5=7978b06910afe54226da6e57124a2084CAS |

[21]  E. A. B. Kantchev, G. R. Peh, C. Zhang, J. Y. Ying, Org. Lett. 2008, 10, 3949.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVWmu7bK&md5=556a66f2da9d1087efdaf7b462b36749CAS |

[22]  E. A. B. Kantchev, J. Y. Ying, Organometallics 2009, 28, 289.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFSit7jO&md5=c238e82f3d22a207de6158747ef85fa0CAS |

[23]  G. R. Ren, X. L. Cui, E. B. Yang, F. Yang, Y. J. Wu, Tetrahedron 2010, 66, 4022.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFyrtro%3D&md5=3d39caeb196d02ce4f4672587e2dc894CAS |

[24]  M. S. Viciu, R. A. Kelly, E. D. Stevens, F. Naud, M. Studer, S. P. Nolan, Org. Lett. 2003, 5, 1479.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjs1Wjurk%3D&md5=264652c7b01718dd54b3c311b4b403feCAS |

[25]  O. Navarro, N. Marion, Y. Oonishi, R. A. Kelly, S. P. Nolan, J. Org. Chem. 2006, 71, 685.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntFCrsA%3D%3D&md5=af9ea6ab2f6f555432a05d97759a2336CAS |

[26]  C. Xu, Z. Q. Wang, W. J. Fu, X. H. Lou, Y. F. Li, F. F. Cen, H. J. Ma, B. M. Ji, Organometallics 2009, 28, 1909.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvFGnsLo%3D&md5=438e7a5b399934969c43225ade340315CAS |

[27]  C. Xu, Y. P. Zhang, Z. Q. Wang, W. J. Fu, X. Q. Hao, Y. Xu, B. M. Ji, Chem. Commun. 2010, 6852.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2gs7fE&md5=caed5b35b9fc793ec5196105628e0dccCAS |

[28]  C. Xu, Z. Q. Wang, Y. P. Zhang, X. M. Dong, X. Q. Hao, W. J. Fu, B. M. Ji, M. P. Song, Eur. J. Inorg. Chem. 2011, 4878.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFyjtb%2FE&md5=2545a91a9bc4f7282ddb9c65788827aaCAS |

[29]  C. Xu, Z. Q. Wang, Z. Li, W. Z. Wang, X. Q. Hao, W. J. Fu, J. F. Gong, B. M. Ji, M. P. Song, Organometallics 2012,
         | Crossref | GoogleScholarGoogle Scholar |

[30]  G. D. Frey, J. Schütz, W. A. Herrmann, J. Organomet. Chem. 2006, 691, 2403.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt1ygt70%3D&md5=b9fd16a86369fe357044eb0ada0e8991CAS |

[31]  D. A. Culkin, J. F. Hartwig, J. Am. Chem. Soc. 2001, 123, 5816.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjslGls70%3D&md5=50b32725a2eea51eeae82af5c8fda7cdCAS |

[32]  R. Singh, S. P. Nolan, J. Organomet. Chem. 2005, 690, 5832.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1CmtLjJ&md5=f436aadf5e92d7e78ba990234d31762bCAS |

[33]  M. Rausch, M. Vogel, H. Rosenberg, J. Org. Chem. 1957, 22, 903.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1cXitFSruw%3D%3D&md5=596b112ec4b4fca2b4f5035de5d766c6CAS |

[34]  G. M. Sheldrick, SHELXL-97: Program for Refinement of Crystal Structure 1997 (University of Göttingen: Göttingen).