Theoretical Study of the Oxidation Mechanism of Hematoxylin in Aqueous Solution
Mansoor Namazian A B C , Hamid R. Zare A and Michelle L. Coote B CA Department of Chemistry, Yazd University, PO Box 89195-741, Yazd, Iran.
B ARC Centre of Excellence for Free-Radical Chemistry and Biotechnology, Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.
C Corresponding authors. Email: namazian@yazduni.ac.ir; mcoote@rsc.anu.edu.au
Australian Journal of Chemistry 65(5) 486-489 https://doi.org/10.1071/CH12019
Submitted: 17 January 2012 Accepted: 16 March 2012 Published: 23 May 2012
Abstract
The oxidation of the two catechol rings A and B in the chemical structure of hematoxylin in aqueous solution has been studied theoretically in order to identify the mechanism of oxidation. In a recent experimental study, the oxidation mechanism of hematoxylin was designated an ErCiEr process in which an irreversible chemical reaction (Ci) followed the reversible chemical electrochemical oxidation (Er) of the catechol unit connected to the six-membered ring of the molecule (ring A). The theoretical results presented herein indicate that the electrochemical oxidation of ring B is actually slightly more favoured than ring A, although the potential separation is so small that they were unable to be distinguished in the experimental study. We therefore suggest that the most likely mechanism is ErErCiEr, in which two reversible electrochemical oxidation reactions (Er) occur preceding the irreversible chemical reaction (Ci), though we cannot rule out a contribution from ErCiEr. The calculated oxidation potential (0.719 V v. standard hydrogen electrode) is in close accord with the experimental value (0.759 V v. standard hydrogen electrode). The deprotonation of five hydroxyl groups of hematoxylin in aqueous solution is also studied and the order of acidic strength of these groups has been identified.
References
[1] H. R. Zare, N. Nasirizadeh, M. M. Ardakani, M. Namazian, Sens. Actuators B Chem. 2006, 120, 288.| Crossref | GoogleScholarGoogle Scholar |
[2] P. A. Houseman, C. K. Swift, J. Ind. Eng. Chem. 1920, 12, 173.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaB3cXjsFWl&md5=7d611f7429c30db725a6c39e77d4bf24CAS |
[3] G. Lynn, E. B. Sansone, Destruction of Hazardous Chemicals in the Laboratory, 2nd ed, 1994, p. 71 (Wiley: New York).
[4] H. R. Zare, N. Nasirizadeh, Electrochim. Acta 2007, 52, 4153.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlGnt7Y%3D&md5=f0321cefc9d0275ec5a3f0357d61e65eCAS |
[5] N. Nasirizadeh, H. R. Zare, Talanta 2009, 80, 656.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1yltL7J&md5=14c651a4415c391833e45585157b35c4CAS |
[6] H. R. Zare, N. Nasirizadeh, Int. J. Electrochem. Sci. 2009, 4, 1691.
| 1:CAS:528:DC%2BC3cXpvVKitw%3D%3D&md5=9276901a379dd016bb7aface28c1b7e6CAS |
[7] H. R. Zare, N. Nasirizadeh, Sens. Actuators B Chem. 2010, 143, 666.
| Crossref | GoogleScholarGoogle Scholar |
[8] H. R. Zare, N. Nasirizadeh, Electrochim. Acta 2011, 56, 3920.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslCnsLk%3D&md5=52008117a0d4c0c00c8328e05afa52e1CAS |
[9] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Lahm, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, GAUSSIAN 03, Revision C.02, 2004 (Gaussian, Inc.: Wallingford, CT).
[10] H. R. Zare, M. Eslami, M. Namazian, M. L. Coote, J. Phys. Chem. B 2009, 113, 8080.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVGntbk%3D&md5=e902157f121c5bb6698da69cdde22431CAS |
[11] H. R. Zare, M. Namazian, M. L. Coote, Electrochim. Acta 2009, 54, 5353.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslKgu74%3D&md5=a691d8bcd37424352191284fa5cdf47aCAS |
[12] M. Namazian, M. Zakery, M. R. Noorbala, M. L. Coote, Chem. Phys. Lett. 2008, 451, 163.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1ahtg%3D%3D&md5=7550d06e8048148eb6cb9bf31cb4c112CAS |
[13] W. J. Hehre, L. Radom, P. V. R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory, 1986 (Wiley: New York).
[14] D. J. Henry, C. J. Parkinson, L. Radom, J. Phys. Chem. A 2002, 106, 7927.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFKmtLo%3D&md5=87597d5568877f2708baecc34ada3f82CAS |
[15] D. J. Henry, M. B. Sullivan, L. Radom, J. Chem. Phys. 2003, 118, 4849.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1ensL0%3D&md5=cf2641be09d8aa0de06d60a9faee412bCAS |
[16] C. Y. Lin, J. L. Hodgson, M. Namazian, M. L. Coote, J. Phys. Chem. A 2009, 113, 3690.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFKnurs%3D&md5=f7db690c085b6c550ee47bde184c9241CAS |
[17] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksV2is74%3D&md5=a502fe9d0b5b391332f2c4bba0d125c8CAS |
[18] A. Klamt, J. Phys. Chem. 1995, 99, 2224.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjsFaisb0%3D&md5=53ecbd1ff68929cde098489845db910dCAS |
[19] A. Klamt, V. Jonas, T. Burger, J. C. W. Lohrenz, J. Phys. Chem. A 1998, 102, 5074.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjs1Srs7Y%3D&md5=1cf8e3a32008dc6d947d1f019b8fd505CAS |
[20] M. Namazian, H. R. Zare, Biophys. Chem. 2005, 117, 13.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnslymsLs%3D&md5=87f0708284bf8d6fbb33b00a2cc863e5CAS |
[21] H. S. Rzepa, G. A. Suner, J. Chem. Soc. Chem. Commun. 1993, 1743.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXns1Orsg%3D%3D&md5=54bd232eb4e45eb0a632fa73678b5573CAS |
[22] M. Namazian, H. A. Almodarresieh, M. R. Noorbala, H. R. Zare, Chem. Phys. Lett. 2004, 396, 424.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVGqu7c%3D&md5=7939f095d524c1ac630b5cab5524374cCAS |
[23] M. Namazian, S. Siahrostami, M. R. Noorbala, M. L. Coote, J. Mol. Struct. THEOCHEM 2006, 759, 245.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs1Siu74%3D&md5=9d05088c961e81fbee629fef11f0ca92CAS |
[24] M. Namazian, C. Y. Lin, M. L. Coote, J. Chem. Theory Comput. 2010, 6, 2721.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsV2ms7Y%3D&md5=c8f83e99ab4e4eb1d520990568edf7baCAS |