Low-cost Hollow Silica Supports for Environmental Pollution: High Removal Capacity and Low Desorption Rate of Neutral Red
Weiwei Wu A , Long Fang A , Shunsheng Cao A B and Zhiyuan Zhao AA School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.
B Corresponding author. Email: sscaochem@hotmail.com
Australian Journal of Chemistry 65(4) 327-332 https://doi.org/10.1071/CH11475
Submitted: 13 December 2011 Accepted: 27 January 2012 Published: 20 March 2012
Abstract
Silica-based porous materials are popular adsorbents and have achieved marked success. However, one of the main challenges is surface functionalization for obtaining better removal performances. Therefore, in this paper we developed a hollow silica adsorbent with a well-defined morphology via a sodium silicate route. Compared with the conventional silica-based porous adsorbents prepared by the modified Stöber method, the synthesized hollow silica support exhibits many advantages such as low-cost silica source, and using only industrial commodities as starting materials and water as solvent. Excitedly, the resulting matrix can be used as a powerful separation tool to deal with environmental pollution because it is easy to separate from wastewater simply by centrifugation without any modification. The experimental results of absorption and separation on the neutral red indicate that low-cost hollow silica supports can evidently increase dye loading and decrease the rate of dye desorbed in comparison to conventional hollow silica adsorbents obtained via the Stöber method.
Additional keywords : adsorbent, sodium silicate.
References
[1] S. Qu, F. Huang, S. Yu, G. Chen, J. Kong, J. Hazard. Mater. 2008, 160, 643.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWht7jJ&md5=83d90f10635866f05244192ff6bde745CAS |
[2] R. Gong, M. Li, C. Yang, Y. Sun, J. Chen, J. Hazard. Mater. 2005, 121, 247.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktVahtrc%3D&md5=261e252d354471185f520da4ecd39114CAS |
[3] J. Gong, B. Wang, G. Zeng, C. Yang, C. Niu, Q. Niu, W. Zhou, Y. Liang, J. Hazard. Mater. 2009, 164, 1517.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsVCksrw%3D&md5=51a011584f322f1fab66f02a50e20bbaCAS |
[4] Q. Zhou, W. Gong, C. Xie, D. Yang, X. Ling, X. Yuan, S. Chen, X. Liu, J. Hazard. Mater. 2011, 185, 502.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCmur3L&md5=ab156c0af23dec3d3b1b23c38d6d9a4fCAS |
[5] S. Cao, Z. Zhao, X. Jin, W. Sheng, S. Li, Y. Ge, M. Dong, W. Wu, L. Fang, J. Mater. Chem. 2011, 21, 19124.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFahsr7I&md5=ef6fc0a63ccee96e2e80159156c014feCAS |
[6] S. Seshadri, P. L. Bishop, A. M. Agha, Waste Manag. 1994, 14, 127.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtFajsLc%3D&md5=6732bab51632fd7b379d91a8b2e25cf8CAS |
[7] K. R. Ramakrishna, T. Viraraghavan, Water Sci. Technol. 1997, 36, 189.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnvFaqur8%3D&md5=899469714122243761d0ffefe113f751CAS |
[8] D. Yue, Y. Jing, J. Ma, C. Xia, X. Yin, Y. Jia, Desalination 2011, 267, 9.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFyjur%2FI&md5=8bcfc2b8af9e6ef816150e49b309c8deCAS |
[9] G. J. Copello, A. M. Mebert, M. Raineri, M. P. Pesenti, L. E. Diaz, J. Hazard. Mater. 2011, 186, 932.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFaqtb8%3D&md5=92d4b0398b9a8773860812c681e24617CAS |
[10] K. C. Chen, J. Y. Wu, C. C. Huang, Y. M. Liang, S. C. J. Hwang, J. Biotechnol. 2003, 101, 241.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1KmtL0%3D&md5=6792cfe9f7e98375c3092215b63523bdCAS |
[11] S. B. Wang, Z. H. Zhu, A. Coomes, F. Haghseresht, G. Q. Lu, J. Colloid Interface Sci. 2005, 284, 440.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVWks70%3D&md5=8b4f0b9942cae26d0ab966168ea7a5ceCAS |
[12] M. Iram, C. Guo, Y. Guan, A. Ishfaq, H. Liu, J. Hazard. Mater. 2010, 181, 1039.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosF2gsrk%3D&md5=fec7f13b6e481f7ad6da70f3a96819b4CAS |
[13] M. Kornaros, G. Lyberatos, J. Hazard. Mater. 2006, 136, 95.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsFGitrc%3D&md5=7466cfec5afeb8794254650bac528503CAS |
[14] E. Guibal, J. Roussy, React. Funct. Polym. 2007, 67, 33.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlGqtrvF&md5=1e44be2dc03e137c340cb615345ab6e3CAS |
[15] W. Zhao, Z. Wu, D. Wang, J. Hazard. Mater. 2006, 137, 1859.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVWrt7%2FP&md5=eff03cb344f69706c6ff0f65ad5c1c88CAS |
[16] G. Crini, Prog. Polym. Sci. 2005, 30, 38.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlOht7w%3D&md5=8a9c7bd5e3b93dd7c4fd5e8305824ab4CAS |
[17] G. Crini, Bioresour. Technol. 2006, 97, 1061.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivVOjur4%3D&md5=eca4a58bd580a3882989380bdfb9bc6eCAS |
[18] J. Ma, Y. Z. Jia, J. H. Sun, Y. Yao, X. H. Wang, J. Hazard. Mater. 2010, 175, 965.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOqsLjI&md5=e2edad1068464fa0b954b559956c5ce6CAS |
[19] F. C. Wu, R. L. Tseng, R. S. Juang, J. Colloid Interface Sci. 2005, 283, 49.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVaru7c%3D&md5=78670afc5a2a354d37e0c67cd8580707CAS |
[20] R. Guravjyoti, A. Venkateswara, D. Y. Nadargi, H. H. Park, J. Mater. Sci. 2010, 45, 503.
| Crossref | GoogleScholarGoogle Scholar |
[21] Z. Guo, F. Chen, Y. Deng, Q. H. Wan, L. Chen, Chem. J. Chin. Univ 2009, 30, 2017.
| 1:CAS:528:DC%2BD1MXhsV2mu7fJ&md5=31db7c6db5d0b54820613a9f4f38d6a4CAS |
[22] A. V. Rao, N. D. Hegde, H Hirashima, J. Colloid Interface Sci. 2007, 305, 124.
| Crossref | GoogleScholarGoogle Scholar |
[23] V. Manu, H. M. Mody, H. C. Bajaj, R. Jasra, Ind. Eng. Chem. Res. 2009, 48, 8954.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFCqur3P&md5=28ee3fbbbfff3c7a1826207a0e4e5037CAS |
[24] A. R. Cestari, E. F. S. Vieira, A. A. Pinto, E. C. N. Lopes, J. Colloid Interface Sci. 2005, 292, 363.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2qsLvI&md5=f9d33a095348731e848671bbbabf0688CAS |
[25] D. Pérez-Quintanilla, I. D. Hierro, M. Fajardo, I. Sierra, J. Mater. Chem. 2006, 16, 1757.
| Crossref | GoogleScholarGoogle Scholar |
[26] X. Feng, G. E. Fryxell, L.-Q. Wang, A. Y. Kim, J. Liu, K. M. Kemner, Science 1997, 276, 923.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjt1Wktb0%3D&md5=07a3eaeea44364f71f41996c3f71ff31CAS |
[27] M. Feyen, C. Wwidenthaler, F. Schuth, A. H. Lu, J. Am. Chem. Soc. 2010, 132, 6791.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFChsbg%3D&md5=77efabe560076814262c52068e2a4532CAS |
[28] L. Li, J. Ding, J. M. Xue, Chem. Mater. 2009, 21, 3629.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos12mu7o%3D&md5=7856d9df848ef07ae19824037a0192fcCAS |
[29] M. Ziolek, C. Martin, M. T. Navarro, H. Garcia, A. Douhal, J. Phys. Chem. C 2011, 115, 8858.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXks1GksLg%3D&md5=e1de284208eff4eb1a55a86cda94f303CAS |
[30] C. Y. Jung, J. S. Kim, T. S. Chang, S. T. Kim, H. J. Lim, S. M. Koo, Langmuir 2010, 26, 5456.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtlajsr8%3D&md5=6c71cbb14b7bfbd38eeab771d91aa76aCAS |
[31] K. Hossain, A. Sayari, Micropor. Mesopor. Mater. 2008, 114, 387.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1ahu7g%3D&md5=c5027aaadb16491b35f8c57c32a2042dCAS |
[32] Y. Wang, G. Wang, H. Wang, W. Cai, L. Zhang, Chem. Commun. (Camb.) 2008, 6555.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKntbzJ&md5=5b28a4ec5fd7b6ded1fecad2776e173bCAS |
[33] K. Kosuge, N. Kikukawa, M. Takemori, Chem. Mater. 2004, 16, 4181.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVOnsbs%3D&md5=54114c4d2735f3d29df4ec683d230047CAS |
[34] H. Elimelech, D. Avnir, Chem. Mater. 2008, 20, 2224.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislemsLg%3D&md5=f322de0cb15e2b7b8fd480430871f4cbCAS |
[35] L. Sierra, J. L. Guth, Micropor. Mesopor. Mater. 1999, 27, 243.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXit1Ogs7s%3D&md5=ec6ca199d67ba23bf02d043672e08c16CAS |
[36] C. Boissière, A. Larbot, E. Prouzet, Chem. Mater. 2000, 12, 1937.
| Crossref | GoogleScholarGoogle Scholar |
[37] K. Kosuge, T. Sato, N. Kikukawa, M. Takemori, Chem. Mater. 2004, 16, 899.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXps1egug%3D%3D&md5=ed4b41cbe6ac930b0a7a8eb840eb32e3CAS |
[38] L. Zhang, H. Chen, J. Sun, J. Shen, Chem. Mater. 2007, 19, 948.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtFSnsQ%3D%3D&md5=1fc4cf9b706e7e8080d3b63a7dd70fa3CAS |
[39] W. Wu, X. Yuan, S. Cao, Y. Ge, S. Li, Z. Zhao, L. Fang, Aust. J. Chem. 2011, 64, 1541.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsF2rtLvM&md5=5cf68828ebb4f42a9c957f40494e260dCAS |
[40] W. Wu, S. Cao, X. Yuan, Z. Zhao, L. Fang, J. Porous. Mater. 2012, 19,
[41] P. Luo, Y. Zhao, B. Zhang, J. Liu, Y. Yang, J. Liu, Water Res. 2010, 44, 1489.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitFyktLo%3D&md5=51955486ca80785362cab9aa3a743fa0CAS |
[42] H. Isobe, S. Utsumi, K. Yamamoto, H. Kanoh, K. Kaneko, Langmuir 2005, 21, 8042.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVaiu7k%3D&md5=508e4cbacf721e1954d2ed2548851e92CAS |
[43] M. Tsai, P. Huang, C. Yang, J. Nanopart. Res. 2006, 8, 943.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1elt7rO&md5=6796ff38f4cd861e27d1f19ee51f8602CAS |
[44] O. Weichold, B. Tigges, M. Bertmer, M. Moller, J. Colloid Interface Sci. 2008, 324, 105.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsFagu7Y%3D&md5=79d2aa34880863eb886b1f51509af139CAS |
[45] Q. X. Zhou, M. Wang, J. Soils Sediments 2010, 10, 1324.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOnt7rF&md5=67e041d06b82f89ad8f4b99afe39446eCAS |