Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Sodium Fluoride at the Air/Water Interface

James K. Beattie A D , Patrice Creux B and Angus Gray-Weale C
+ Author Affiliations
- Author Affiliations

A School of Chemistry, University of Sydney, NSW 2006, Australia.

B UMR 5150 CNRS-Total- UPPA, University of Pau, 64013 Pau cedex, France.

C School of Chemistry, University of Melbourne, Vic. 3010, Australia.

D Corresponding Author. Email: james.beattie@sydney.edu.au

Australian Journal of Chemistry 64(12) 1580-1582 https://doi.org/10.1071/CH11285
Submitted: 12 July 2011  Accepted: 10 September 2011   Published: 8 December 2011

Abstract

The zeta potentials of a single N2 bubble in near neutral aqueous solutions of 10–5 to 10–2 M NaF have been measured with a rotating cell zetameter. The zeta potentials in the NaF solutions are slightly more negative than those of comparable NaI concentrations. A simple interpretation of this observation is that the small size of the fluoride ion leads to its stronger adsorption at the interface, despite its smaller dielectric decrement. This would not be consistent with independent electrospray results from 100 µM solutions that bromide ion is less strongly adsorbed than iodide ion, i.e. that surface affinity increases with ion size. An alternative interpretation of the fluoride experiment is that the fluoride surface affinity is the consequence of stronger ion pairing with the NaOH that spontaneously forms at the interface.


References

[1]  R. Vácha, D. Horinek, R. Buchner, B. Winter, P. Jungwirth, Phys. Chem. Chem. Phys. 2010, 12, 14362.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  A. Gray-Weale, J. K. Beattie, Phys. Chem. Chem. Phys. 2010, 12, 14364.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlWjsr%2FN&md5=043380219e9fb716ae66ef8c70383f60CAS |

[3]  P. Creux, J. Lachaise, A. Graciaa, J. K. Beattie, J. Phys. Chem. C 2007, 111, 3753.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFOku7o%3D&md5=8cac2ed6f64a5384addeca2a4b1a64f9CAS |

[4]  P. K. Weissenborn, R. J. Pugh, J. Colloid Interface Sci. 1996, 184, 550.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXosF2ktg%3D%3D&md5=147a6525934a83fda222011fb001563aCAS |

[5]  G. Jones, W. A. Ray, J. Am. Chem. Soc. 1941, 63, 288.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH3MXotFam&md5=c2b228e77d467ff425006605e99dbfd4CAS |

[6]  P. B. Petersen, R. J. Saykally, J. Am. Chem. Soc. 2005, 127, 15446.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWku7jK&md5=ab93d23a0a23b60d295bf4cc40d55c83CAS |

[7]  M. Manciu, E. Ruckenstein, Adv. Colloid Interface Sci. 2003, 105, 63.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvF2ns78%3D&md5=335860f4fe5f7684d8ba072abdc0c6e6CAS |

[8]  A. Gray-Weale, J. K. Beattie, Phys. Chem. Chem. Phys. 2009, 11, 10994.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVentrfI&md5=d380973d88ff8379ebb4a7c185099b4aCAS |

[9]  W. R. Fawcett, A. C. Tikanen, J. Phys. Chem. 1996, 100, 4251.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtVKrsr0%3D&md5=e04a6e2dc4489a6857ac8380d98365ffCAS |

[10]  P. Creux, J. Lachaise, A. Graciaa, J. K. Beattie, A. Djerdjev, J. Phys. Chem. B 2009, 113, 14146.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1eltrjN&md5=ee6c15bb316595654a31cbf75b5527dbCAS |

[11]  P. B. Petersen, R. J. Saykally, Chem. Phys. Lett. 2004, 397, 51.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvV2ntLs%3D&md5=759eeb0b21a279863f7e79fc2da19d90CAS |

[12]  J. Cheng, C. D. Vecitis, M. R. Hoffmann, A. J. Colussi, J. Phys. Chem. B 2006, 110, 25598.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Chsb7E&md5=9c27412695808059d0fa80f13bc0fb3bCAS |

[13]  P. Jungwirth, D. J. Tobias, J. Phys. Chem. B 2002, 106, 6361.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFahur4%3D&md5=4fb367f500304d6830a817d8d9fc9688CAS |

[14]  J. Cheng, M. R. Hoffmann, A. J. Colussi, J. Phys. Chem. B 2008, 112, 7157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVeksbw%3D&md5=be504058c1441092c834316a9d3de194CAS |

[15]  J. K. Beattie, A. M. Djerdjev, Angew. Chem. Int. Ed. 2004, 43, 3568.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFGgurs%3D&md5=c5357ba75ca3ce0ece6a9c0b35802e08CAS |

[16]  P. B. Petersen, J. C. Johnson, K. P. Knutsen, R. J. Saykally, Chem. Phys. Lett. 2004, 397, 46.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvV2ntLo%3D&md5=a0bdafbdd303538aa6463d86fc29c248CAS |

[17]  K. Hänni-Ciunel, N. Schelero, R. v. Klitzing, Faraday Discuss. 2009, 141, 41.
         | Crossref | GoogleScholarGoogle Scholar |