Photocatalytic Water Oxidation Using Manganese Compounds Immobilized in Nafion Polymer Membranes
Karin J. Young A , Yunlong Gao A and Gary W. Brudvig A BA Department of Chemistry, Yale University, New Haven, CT 06520, USA.
B Corresponding author. Email: gary.brudvig@yale.edu
Australian Journal of Chemistry 64(9) 1221-1228 https://doi.org/10.1071/CH11178
Submitted: 4 May 2011 Accepted: 6 June 2011 Published: 27 July 2011
Abstract
Robust water oxidation catalysts using earth abundant metals are required as part of an overall scheme to convert sunlight into fuels. Here, we report the immobilization of [Mn4IVO5(terpy)4(H2O)2](ClO4)6 (terpy = 2,2′;6′,2′′-terpyridine), [Mn4O6(tacn)4](ClO4)4 (tacn = 1,4,7-triazacyclononane), and manganese dioxide nanoparticles in Nafion on fluorine-doped tin oxide conducting glass electrodes. The electrodes are illuminated with white light in the presence of an applied potential and the resulting photocurrent is assigned to the oxidation of solvent water. Photodecomposition of the tetrameric complexes results in a material that is more active for light-driven electrooxidation of water. The reactivity, wavelength dependence, and stability of the compounds in Nafion under illumination are discussed.
References
[1] N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2006, 103, 15729.| Crossref | GoogleScholarGoogle Scholar |
[2] J. Limburg, J. S. Vrettos, L. M. Liable-Sands, A. L. Rheingold, R. H. Crabtree, G. W. Brudvig, Science 1999, 283, 1524.
| Crossref | GoogleScholarGoogle Scholar |
[3] Y. Shimazaki, T. Nagano, H. Takesue, B. H. Ye, F. Tani, Y. Naruta, Angew. Chem. Int. Ed. 2004, 43, 98.
| Crossref | GoogleScholarGoogle Scholar |
[4] R. Brimblecombe, G. F. Swiegers, G. C. Dismukes, L. Spiccia, Angew. Chem. Int. Ed. 2008, 47, 7335.
| Crossref | GoogleScholarGoogle Scholar |
[5] D. J. Wasylenko, C. Ganesamoorthy, J. Borau-Garcia, C. P. Berlinguette, Chem. Commun. 2011, 47, 4249.
| Crossref | GoogleScholarGoogle Scholar |
[6] S. W. Gersten, G. J. Samuels, T. J. Meyer, J. Am. Chem. Soc. 1982, 104, 4029.
| Crossref | GoogleScholarGoogle Scholar |
[7] J. J. Concepcion, J. W. Jurss, J. L. Templeton, T. J. Meyer, J. Am. Chem. Soc. 2008, 130, 16462.
| Crossref | GoogleScholarGoogle Scholar |
[8] I. Romero, M. Rodríguez, C. Sens, J. Mola, M. Rao Kollipara, L. Francàs, E. Mas-Marza, L. Escriche, A. Llobet, Inorg. Chem. 2008, 47, 1824.
| Crossref | GoogleScholarGoogle Scholar |
[9] H.-W. Tseng, R. Zong, J. T. Muckerman, R. Thummel, Inorg. Chem. 2008, 47, 11763.
| Crossref | GoogleScholarGoogle Scholar |
[10] N. D. McDaniel, F. J. Coughlin, L. L. Tinker, S. Bernhard, J. Am. Chem. Soc. 2008, 130, 210.
| Crossref | GoogleScholarGoogle Scholar |
[11] J. F. Hull, D. Balcells, J. D. Blakemore, C. D. Incarvito, O. Eisenstein, G. W. Brudvig, R. H. Crabtree, J. Am. Chem. Soc. 2009, 131, 8730.
| Crossref | GoogleScholarGoogle Scholar |
[12] K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, M. Graetzel, J. Am. Chem. Soc. 2010, 132, 7436.
| Crossref | GoogleScholarGoogle Scholar |
[13] M. W. Kanan, D. G. Nocera, Science 2008, 321, 1072.
| Crossref | GoogleScholarGoogle Scholar |
[14] Q. Yin, J. M. Tan, C. Besson, Y. V. Geletii, D. G. Musaev, A. E. Kuznetsov, Z. Luo, K. I. Hardcastle, C. L. Hill, Science 2010, 328, 342.
| Crossref | GoogleScholarGoogle Scholar |
[15] D. M. Robinson, Y. B. Go, M. Greenblatt, G. C. Dismukes, J. Am. Chem. Soc. 2010, 132, 11467.
| Crossref | GoogleScholarGoogle Scholar |
[16] Y. Gorlin, T. F. Jaramillo, J. Am. Chem. Soc. 2010, 132, 13612.
| Crossref | GoogleScholarGoogle Scholar |
[17] A. Harriman, I. J. Pickering, J. M. Thomas, P. A. Christensen, J. Chem. Soc., Farad. Trans. 1 1988, 84, 2795.
| Crossref | GoogleScholarGoogle Scholar |
[18] T. Nakagawa, N. S. Bjorge, R. W. Murray, J. Am. Chem. Soc. 2009, 131, 15578.
| Crossref | GoogleScholarGoogle Scholar |
[19] J. D. Blakemore, N. D. Schley, D. Balcells, J. F. Hull, G. W. Olack, C. D. Incarvito, O. Eisenstein, G. W. Brudvig, R. H. Crabtree, J. Am. Chem. Soc. 2010, 132, 16017.
| Crossref | GoogleScholarGoogle Scholar |
[20] J. D. Blakemore, N. D. Schley, G. W. Olack, C. D. Incarvito, G. W. Brudvig, R. H. Crabtree, Chem. Sci. 2011, 2, 94.
| Crossref | GoogleScholarGoogle Scholar |
[21] J. P. McEvoy, G. W. Brudvig, Chem. Rev. 2006, 106, 4455.
| Crossref | GoogleScholarGoogle Scholar |
[22] R. Tagore, H. Y. Chen, H. Zhang, R. H. Crabtree, G. W. Brudvig, Inorg. Chim. Acta 2007, 360, 2983.
| Crossref | GoogleScholarGoogle Scholar |
[23] M. Yagi, K. Narita, J. Am. Chem. Soc. 2004, 126, 8084.
| Crossref | GoogleScholarGoogle Scholar |
[24] W. Ruettinger, M. Yagi, K. Wolf, S. Bernasek, G. C. Dismukes, J. Am. Chem. Soc. 2000, 122, 10353.
| Crossref | GoogleScholarGoogle Scholar |
[25] R. Brimblecombe, D. R. J. Kolling, A. M. Bond, G. C. Dismukes, G. F. Swiegers, L. Spiccia, Inorg. Chem. 2009, 48, 7269.
| Crossref | GoogleScholarGoogle Scholar |
[26] R. K. Hocking, R. Brimblecombe, L.-Y. Chang, A. Singh, M. H. Cheah, C. Glover, W. H. Casey, L. Spiccia, Nat. Chem. 2011, 3, 461.
[27] M. Yagi, M. Kasamastu, M. Kaneko, J. Mol. Catal. Chem. 2000, 151, 29.
| Crossref | GoogleScholarGoogle Scholar |
[28] M. Hara, T. E. Mallouk, Chem. Comm. 2000, 190.
[29] K. A. Mauritz, R. B. Moore, Chem. Rev. 2004, 104, 4535.
| Crossref | GoogleScholarGoogle Scholar |
[30] H. Y. Chen, J. W. Faller, R. H. Crabtree, G. W. Brudvig, J. Am. Chem. Soc. 2004, 126, 7345.
| Crossref | GoogleScholarGoogle Scholar |
[31] K. Wieghardt, U. Bossek, W. Gebert, Angew. Chem. Int. Ed. Engl. 1983, 22, 328.
| Crossref | GoogleScholarGoogle Scholar |
[32] T. Wieprecht, J. Xia, U. Heinz, J. Dannacher, G. Schlingloff, J. Mol. Catal. Chem. 2003, 203, 113.
| Crossref | GoogleScholarGoogle Scholar |
[33] R. Mohr, R. Van Eldik, H. Kelm, Inorg. Chem. 1985, 24, 3396.
| Crossref | GoogleScholarGoogle Scholar |
[34] R. Tagore, H. Y. Chen, R. H. Crabtree, G. W. Brudvig, J. Am. Chem. Soc. 2006, 128, 9457.
| Crossref | GoogleScholarGoogle Scholar |
[35] R. Tagore, R. H. Crabtree, G. W. Brudvig, Inorg. Chem. 2007, 46, 2193.
| Crossref | GoogleScholarGoogle Scholar |
[36] Z. Liang, W. Chen, J. Liu, S. Wang, Z. Zhou, W. Li, G. Sun, Q. Xin, J. Membr. Sci. 2004, 233, 39.
| Crossref | GoogleScholarGoogle Scholar |
[37] M. Morita, C. Iwakura, H. Tamura, Electrochim. Acta 1977, 22, 325.
| Crossref | GoogleScholarGoogle Scholar |
[38] J. P. Hill, H. Palza, S. Alam, K. Ariga, A. L. Schumacher, F. D’Souza, C. E. Anson, A. K. Powell, Inorg. Chem. 2008, 47, 8306.
| Crossref | GoogleScholarGoogle Scholar |
[39] N. T. McDevitt, W. L. Baun, Spectrochimica Acta 1964, 20, 799.
| Crossref | GoogleScholarGoogle Scholar |
[40] G. A. Kolta, F. M. A. Kerim, A. A. A. Azim, Z. Anorg. Allg. Chem. 1971, 384, 260.
| Crossref | GoogleScholarGoogle Scholar |
[41] E. M. Sproviero, J. A. Gascón, J. P. McEvoy, G. W. Brudvig, V. S. Batista, J. Am. Chem. Soc. 2008, 130, 3428.
| Crossref | GoogleScholarGoogle Scholar |
[42] D. R. Gamelin, M. L. Kirk, T. L. Stemmler, S. Pal, W. H. Armstrong, J. E. Penner-Hahn, E. I. Solomon, J. Am. Chem. Soc. 1994, 116, 2392.
| Crossref | GoogleScholarGoogle Scholar |
[43] S. Devaraj, N. Munichandraiah, J. Electrochem. Soc. 2007, 154, A80.
| Crossref | GoogleScholarGoogle Scholar |