Aggregation-Induced Emission and Biological Application of Tetraphenylethene Luminogens
Yuning Hong A , Jacky Wing Yip Lam A , Sijie Chen A and Ben Zhong Tang A B CA Department of Chemistry, Nano Science and Technology Program, Bioengineering Graduate Program, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
B Department of Polymer Science and Engineering, Institute of Biomedical Macromolecules, Zhejiang University, Hangzhou 310027, China.
C Corresponding author. Email: tangbenz@ust.hk
Australian Journal of Chemistry 64(9) 1203-1210 https://doi.org/10.1071/CH11170
Submitted: 29 April 2011 Accepted: 21 May 2011 Published: 27 July 2011
Abstract
Tetraphenylethene derivatives [Ph(PhCH=CHPhR)C=C(PhCH=CHPhR)Ph, R=H, CN, NO2, NPh2] with green, yellow-green, and orange emission colours were designed and synthesized. These molecules are practically non-emissive in their dilute solutions but emit intensely as nanoaggregates in poor solvents, demonstrating a novel phenomenon of aggregation-induced emission. Their blended films with poly(methyl methacrylate) also display bright emissions. Restriction of intramolecular motion in the condensed phase may be responsible for such unusual behaviour. Multilayer electroluminescence devices with a configuration of indium tin oxide/N,N′-di(1-naphthyl)-N,N′-diphenylbenzidine/emitter/tris(8-hydroxyquinolinolato)aluminum (Alq3)/LiF/Al were constructed, which gave green light with a maximum luminance and current efficiency of 12930 cd cm–2 and 3.04 cd A–1 respectively. The tetraphenylethenes can serve as excellent cell staining agents for selectively illuminating the cytoplasm and vesicles of living cells.
References
[1] (a) S. M. Borisov, O. S. Wolfbeis, Chem. Rev. 2008, 108, 423.| Crossref | GoogleScholarGoogle Scholar |
(b) Y. Wang, J. Y. J. Shyy, S. Chien, Annu. Rev. Biomed. Eng. 2008, 10, 1.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. B. VanEngelenburg, A. E. Palmer, Curr. Opin. Chem. Biol. 2008, 12, 60.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. W. Domaille, E. L. Que, C. J. Chang, Nat. Chem. Biol. 2008, 4, 168.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. Mayer, S. Neuenhofer, Angew. Chem. Int. Ed. Engl. 1994, 33, 1044.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) B. N. G. Giepmans, S. R. Adams, M. h. Ellisman, R. Y. Tsien, Science 2006, 312, 217.
| Crossref | GoogleScholarGoogle Scholar |
(b) X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, S. Weiss, Science 2005, 307, 538.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. W. Thomas III, S. W. Thomas III, Chem. Rev. 2007, 107, 1339.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Burns, H. Ow, U. Wiesner, Chem. Soc. Rev. 2006, 35, 1028.
| Crossref | GoogleScholarGoogle Scholar |
(e) N. L. Rosi, C. A. Mirkin, Chem. Rev. 2005, 105, 1547.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Nat. Mater. 2005, 4, 435.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. M. Klostranec, W. C. W. Chan, Adv. Mater. 2006, 18, 1953.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) F. C. Krebs, S. R. Miller, B. J. Catalone, R. Fichorova, D. Anderson, D. Malamud, M. K. Howett, B. Wigdahl, Antimicrob. Agents Chemother. 2002, 46, 2292.
| Crossref | GoogleScholarGoogle Scholar |
(b) H. Li, Q. Zhou, W. Liu, B. Yan, Y. Zhao, G. Jiang, Sci. China Ser. Biol. Chem. 2008, 51, 393.
| Crossref | GoogleScholarGoogle Scholar |
[5] I. Chen, A. Y. Ting, Curr. Opin. Biotechnol. 2005, 16, 35.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) M. Sameiro, T. Gonçalves, Chem. Rev. 2009, 109, 190.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. Loudet, K. Burgess, Chem. Rev. 2007, 107, 4891.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) F. h. Quina, E. A. Lissi, Acc. Chem. Res. 2004, 37, 703.
| Crossref | GoogleScholarGoogle Scholar |
(b) I. Capek, Adv. Colloid Interface Sci. 2002, 97, 91.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) J.-L. Mergny, J.-C. Maurizot, ChemBioChem 2001, 2, 124.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. L. Mergny, Biochemistry 1999, 38, 1573.
| Crossref | GoogleScholarGoogle Scholar |
(c) N. Venkatesan, Y. J. Seo, B. H. Kim, Chem. Soc. Rev. 2008, 37, 648.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun. 2001, 1740.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo, I. D. Williams, D. Zhu, B. Z. Tang, Chem. Mater. 2003, 15, 1535.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Chen, B. Xu, X. Ouyang, B. Z. Tang, Y. Cao, J. Phys. Chem. A 2004, 108, 7522.
| Crossref | GoogleScholarGoogle Scholar |
(d) H. Tong, Y. Dong, M. Haussler, J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, J. Sun, B. Z. Tang, Chem. Commun. 2006, 1133.
| Crossref | GoogleScholarGoogle Scholar |
(e) Q. Zeng, Z. Li, Y. Dong, C. Di, A. Qin, Y. Hong, Z. Zhu, C. K. W. Jim, G. Yu, Q. Li, Z. Li, Y. Liu, J. Qin, B. Z. Tang, Chem. Commun. 2007, 70.
| Crossref | GoogleScholarGoogle Scholar |
(f) Y. Dong, J. W. Y. Lam, A. Qin, J. Sun, J. Liu, Z. Li, J. Sun, H. H. Y. Sung, I. D. Williams, H. S. Kwok, B. Z. Tang, Chem. Commun. 2007, 3255.
| Crossref | GoogleScholarGoogle Scholar |
(g) H. Tong, Y. Hong, Y. Dong, M. Haussler, J. W. Y. Lam, Z. Li, Z. Guo, Z. Guo, B. Z. Tang, Chem. Commun. 2006, 3705.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) Y. T. Wu, M. Y. Kuo, Y. T. Chang, C. C. Shin, T. C. Wu, C. C. Tai, T. H. Cheng, W. S. Liu, Angew. Chem. Int. Ed. 2008, 47, 9891.
| Crossref | GoogleScholarGoogle Scholar |
(b) C. J. Bhongale, C. W. Chang, C. S. Lee, E. W. G. Diau, C. S. Hsu, J. Phys. Chem. B 2005, 109, 13472.
| Crossref | GoogleScholarGoogle Scholar |
(c) Z. Xie, B. Yang, W. Xie, L. Liu, F. Shen, H. Wang, X. Yang, Z. Wang, Y. Li, M. Hanif, G. Yang, L. Ye, Y. Ma, J. Phys. Chem. B 2006, 110, 20993.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. X. Yuan, X. T. Tao, L. Wang, J. X. Yang, M. h. Jiang, J. Phys. Chem. C 2009, 113, 6809.
| Crossref | GoogleScholarGoogle Scholar |
(e) Z. Yang, Z. Chi, T. Yu, X. Zhang, M. Chen, B. Xu, S. Liu, Y. Zhang, J. Xu, J. Mater. Chem. 2009, 19, 5541.
| Crossref | GoogleScholarGoogle Scholar |
(f) Z. J. Ning, Z. Chen, Q. Zhang, Y. L. Yan, S. X. Qian, Y. Cao, H. Tian, Adv. Funct. Mater. 2007, 17, 3799.
| Crossref | GoogleScholarGoogle Scholar |
(g) G. Qian, B. Dai, M. Luo, D. Yu, J. Zhan, Z. Zhang, M. Dongge, Z. Y. Wang, Chem. Mater. 2008, 20, 6208.
| Crossref | GoogleScholarGoogle Scholar |
(h) W. X. Tang, Y. Xiang, A. J. Tong, J. Org. Chem. 2009, 74, 2163.
| Crossref | GoogleScholarGoogle Scholar |
(i) J. He, B. Xu, F. Chen, H. Xia, K. Li, L. Ye, W. Tian, J. Phys. Chem. C 2009, 113, 9892.
| Crossref | GoogleScholarGoogle Scholar |
(j) E. Quartapelle Procopio, M. Mauro, M. Panigati, D. Donghi, P. Mercandelli, A. Sironi, G. D’Alfonso, L. De Cola, J. Am. Chem. Soc. 2010, 132, 14397.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) H. Tong, Y. Hong, Y. Dong, M. Haussler, Z. Li, J. W. Y. Lam, Z. Li, Y. Dong, H. H. Y. Sung, I. D. Williams, B. Z. Tang, J. Phys. Chem. B 2007, 111, 11817.
| Crossref | GoogleScholarGoogle Scholar |
(b) Y. Dong, J. W. Y. Lama, A. Qin, J. Liu, Z. Li, B. Z. Tang, Appl. Phys. Lett. 2007, 91, 11111.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) Y. Hong, M. Haeussler, J. W. Y. Lam, Z. Li, K. K. Sin, Y. Dong, H. Tong, J. Liu, A. Qin, R. Renneberg, B. Z. Tang, Chemistry 2008, 14, 6428.
| Crossref | GoogleScholarGoogle Scholar |
(b) Y. Hong, H. Xiong, J. W. Y. Lam, M. Haessler, J. Liu, Y. Yu, Y. Zhong, H. H. Y. Sung, I. D. Williams, K. S. Wong, B. Z. Tang, Chemistry 2010, 16, 1232.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Hong, C. Feng, Y. Yu, J. Liu, J. W. Y. Lam, K. Q. Luo, B. Z. Tang, Anal. Chem. 2010, 82, 7035.
| Crossref | GoogleScholarGoogle Scholar |
(d) H. Tong, Y. N. Hong, Y. Q. Dong, M. Haussler, J. W. Y. Lam, Z. Li, Z. F. Guo, Z. H. Guo, B. Z. Tang, Chem. Commun. 2006, 3705.
| Crossref | GoogleScholarGoogle Scholar |
(e) Y. Yu, Y. Hong, C. Feng, J. Liu, J. W. Y. Lam, M. Faisal, K. M. Ng, K. Q. Luo, B. Z. Tang, Sci. China Ser. B: Chem. 2009, 52, 15.
| Crossref | GoogleScholarGoogle Scholar |
(f) T. Sanji, K. Shiraishi, M. Tanaka, ACS Appl. Mater. Interfaces 2009, 1, 270.
| Crossref | GoogleScholarGoogle Scholar |
[13] M. Wang, G. Zhang, D. Zhang, D. Zhu, B. Z. Tang, J. Mater. Chem. 2010, 20, 1858 and references therein.
| Crossref | GoogleScholarGoogle Scholar |
[14] Z. Zhao, S. Chen, X. Shen, F. Mahtab, Y. Yu, P. Lu, J. W. Y. Lam, H. S. Kwok, B. Z. Tang, Chem. Commun. 2010, 46, 686.
| Crossref | GoogleScholarGoogle Scholar |
[15] Y. Q. Dong, J. W. Y. Lam, A. Qin, J. X. Sun, J. Z. Liu, Z. Li, J. Z. Sun, H. H. Y. Sung, I. D. Williams, H. S. Kwok, B. Z. Tang, Chem. Commun. 2007, 3255.
| Crossref | GoogleScholarGoogle Scholar |
[16] R. J. Ellis, Curr. Opin. Struct. Biol. 2001, 11, 500.
| Crossref | GoogleScholarGoogle Scholar |