Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Homo and Heterocoupling of Terminal Alkynes Using Catalytic CuCl2 and DBU

Rengarajan Balamurugan A B , Naganaboina Naveen A , Seetharaman Manojveer A and Masthan Vali Nama A
+ Author Affiliations
- Author Affiliations

A School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad 500046, India.

B Corresponding author. Email: rbsc@uohyd.ernet.in

Australian Journal of Chemistry 64(5) 567-575 https://doi.org/10.1071/CH11080
Submitted: 17 February 2011  Accepted: 5 April 2011   Published: 30 May 2011

Abstract

Homocoupling of terminal alkynes has been efficiently achieved using catalytic amounts of CuCl2 and DBU. This methodology could be extended to couple two different terminal alkynes together by taking one of the alkyne partners, preferably the electron rich alkyne, in five fold excess than the other.


References

[1]  (a) H. A. Stefani, A. S. Guarezemini, R. Cella, Tetrahedron 2010, 66, 7871.For representative reviews see
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFaitbzO&md5=4859cd75dcc3b8c6712e8d5567feb21fCAS |
      (b) P. Siemsen, R. C. Livingston, F. Diederich, Angew. Chem. Int. Ed. 2000, 39, 2632.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) C. Glaser, Ber. Dtsch. Chem. Ges. 1869, 2, 422.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) C. Glaser, Ann. Chem. Pharm. 1870, 154, 137.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) G. Eglinton, A. R. Galbraith, J. Chem. Soc. 1959, 889.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1MXpvFKlug%3D%3D&md5=511091c6066f25759de541d9834150f6CAS |
      (b) G. Eglinton, A. R. Galbraith, Chem. Ind. 1956, 737.

[4]  (a) A. Hay, J. Org. Chem. 1960, 70, 4393.
      (b) A. Hay, J. Org. Chem. 1962, 27, 3320.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) J. M. Tour, Chem. Rev. 1996, 96, 537.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsVKmug%3D%3D&md5=67ad8389d38c56c8899635927193b6b3CAS | 11848764PubMed |
      (b) R. E. Martin, F. Diederich, Angew. Chem. Int. Ed. 1999, 38, 1350.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) M. Yamaguchi, H.-J. Park, M. Hirama, K. Torisu, S. Nakamura, T. Minami, H. Nishihara, T. Hiraoka, Bull. Chem. Soc. Jpn. 1994, 67, 1717.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtVGju7Y%3D&md5=fa62ce901c497c2a9d7ea487000f6efcCAS |
      (b) F. Alonso, I. P. Beletskaya, M. Yus, Chem. Rev. 2004, 104, 3079.
         | Crossref | GoogleScholarGoogle Scholar |

[7]     (a) (a) H. G. Viehe, Chemistry of Acetylene 1969, p. 597 (Marcel Dekker: New York, NY).
      (b) L. Hansen, P. M. Boll, Phytochemistry 1986, 25, 285.
         | Crossref | GoogleScholarGoogle Scholar |
         (c) (c) V. D. Hunstman, S. Patai, The Chemistry of the Carbon-Carbon Triple Bond 1978, p. 553 (Wiley-Interscience: London).

[8]     (a) (a) J. Breitenbach, J. Boosfeld, F. Vogtle, Comprehensive Supramolecular Chemistry (Ed. V. Vogtle) 1996, Vol. 2, pp. 29–67 (Pergamon: Oxford, UK).
         (b) (b) J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives 1995 (VCH: Weinheim).
         (c) (c) R. J. K. Taylor, Organocopper Reagents: A Practical Approach 1994 (Oxford University Press: New York, NY).

[9]  (a) S. Adimurthy, C. C. Malakar, U. Beifuss, J. Org. Chem. 2009, 74, 5648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntFygsLk%3D&md5=b2456e0c92617b4faeea902b5a03207dCAS | 19518122PubMed |
      (b) J. S. Yadav, B. V. S. Reddy, K. U. Gayathri, A. R. Prasad, Tetrahedron Lett. 2003, 44, 6493.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. Li, J. Wang, G. Zhang, Q. Liu, Tetrahedron Lett. 2009, 50, 4033.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) D. Li, K. Yin, J. Li, X. Jia, Tetrahedron Lett. 2008, 49, 5918.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) Q. Zheng, R. Hua, Y. Wan, Appl. Organometal. Chem. 2010, 24, 314.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) P. Kuhn, A. Alix, M. Kumar Raja, B. Louis, P. Pale, J. Sommer, Eur. J. Org. Chem. 2009, 423.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) D. Wang, J. Li, N. Li, T. Gao, S. Hou, B. Chen, Green Chem. 2010, 12, 45.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) K. Balaraman, V. Kesavan, Synthesis 2010, 20, 3461.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) M. W. Paixão, M. Weber, A. L. Braga, J. B. de Azeredo, A. M. Deobald, H. A. Stefani, Tetrahedron Lett. 2008, 49, 2366.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) Y. Nishihara, M. Okamoto, M. Miyazaki, M. Miyasaki, K. Takagi, Tetrahedron Lett. 2005, 46, 8661.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) K. Kamata, S. Yamaguchi, M. Kotani, K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed. 2008, 47, 2407.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) A. Lei, M. Srivastava, X. Zhang, J. Org. Chem. 2002, 67, 1969.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsFWrt74%3D&md5=43fdd1a68bc5492b895b475402039020CAS | 11895420PubMed |
      (b) S.-N. Chen, W.-Y. Wu, F.-Y. Tsai, Green Chem. 2009, 11, 269.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J.-H. Li, Y. Liang, Y.-X. Xie, J. Org. Chem. 2005, 70, 4393.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J.-H. Li, Y. Liang, X.-D. Zhang, Tetrahedron 2005, 61, 1903.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. Shi, H.-x. Qian, Appl. Organomet. Chem. 2006, 20, 771.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) J. Yan, J. Wu, H. Jin, J. Organomet. Chem. 2007, 692, 3636.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) Q. Liu, D. J. Burton, Tetrahedron Lett. 1997, 38, 4371.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) T. Oishi, T. Katayama, K. Yamaguchi, N. Mizuno, Chemistry 2009, 15, 7539.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptleku78%3D&md5=8a0cebc280a033ae2fb7b09594ff93a5CAS | 19569142PubMed |
      (b) B. C. Zhu, X. Z. Jiang, Appl. Organomet. Chem. 2007, 21, 345.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Liao, R. Fathi, Z. Yang, Org. Lett. 2003, 5, 909.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  P. Bharathi, M. Periasamy, Organometallics 2000, 19, 5511.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvFSrt70%3D&md5=7d2bae1e3a6a96b3c1f9d6547c9ff4e4CAS |

[13]  M. E. Krafft, C. Hirosawa, N. Dalal, C. Ramsey, A. Steigman, Tetrahedron Lett. 2001, 42, 7733.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsV2ku7g%3D&md5=9063c2cb5c0e7488e19ad42eea45961cCAS |

[14]  J. Crowley, S. M. Goldup, N. D. Gowans, D. A. Leigh, V. E. Ronaldson, A. M. Z. Slawin, J. Am. Chem. Soc. 2010, 132, 6243.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksVamsb4%3D&md5=25ae2060e1a4c1efc53fec9a0f3905c7CAS | 20377187PubMed |

[15]  X. Meng, C. Li, B. Han, T. Wang, B. Chen, Tetrahedron 2010, 66, 4029.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFyrtrs%3D&md5=f1735bc7dfe374f82de46aa610328ccaCAS |

[16]  (a) W. Chodkiewicz, P. Cadiot, C. R. Hebd. Seances, Acad. Sci. 1955, 241, 1055.
         | 1:CAS:528:DyaG28Xls1yhtg%3D%3D&md5=e24d1ebd9837d2ed746408ca7f26cb49CAS |
      (b) W. Chodkiewicz, Ann. Chim. 1957, 2, 819.

[17]  (a) N. Miyaura, K. Yamada, A. Suzuki, Tetrahedron Lett. 1979, 20, 3437.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) J. Wityak, J. B. Chan, Synth. Commun. 1991, 21, 977.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. Amatore, E. Blart, J. P. Genet, A. Jutand, S. Lemaire-Audoire, M. Savignac, J. Org. Chem. 1995, 60, 6829.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) W. Yin, C. He, M. Chen, H. Zhang, A. Lei, Org. Lett. 2009, 11, 709.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  Z. Chen, H. Jiang, A. Wang, S. Yang, J. Org. Chem. 2010, 75, 6700.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2ktLrI&md5=b39903a463a88b3ae227222fdef66a8dCAS | 20806953PubMed |

[19]  D. Fournier, M.-L. Romagne, S. Pascual, V. Montembault, L. Fontaine, Eur. Polym. J. 2005, 41, 1576.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslOgu70%3D&md5=82fa752cdae6ccf29928db6ccaf365bcCAS |

[20]  V. Fiandanese, D. Bottalico, G. Marchese, A. Punzi, Tetrahedron 2008, 64, 7301.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsFOks7k%3D&md5=b593b5249c60d89f3177ae15afd50a04CAS |

[21]  N. P. Bowling, N. J. Burrmann, R. J. Halter, J. A. Hodges, R. J. McMahon, J. Org. Chem. 2010, 75, 6382.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFWlsbzK&md5=36bf24dbbbd107df370d33f20bd9cb33CAS | 20812705PubMed |

[22]  C. Koradin, W. Dohle, A. L. Rodriguez, B. Schmid, P. Knochel, Tetrahedron 2003, 59, 1571.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtFCkt7k%3D&md5=b3c1afa5581e34e39134bc96f1e73e4cCAS |

[23]  T. Okamoto, K. Kudoh, A. Wakamiya, S. Yamaguchi, Org. Lett. 2005, 7, 5301.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFalu7nM&md5=c8f331619fd1bddc3e04ee8ba6b2b46eCAS | 16268563PubMed |

[24]  Godt  A.J. Org. Chem. 1997, 62 , 7471. 10.1021/JO970549P