Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Wrapping and Internalization of Nanoparticles by Lipid Bilayers: a Computer Simulation Study

Kai Yang A and Yu-qiang Ma A B C
+ Author Affiliations
- Author Affiliations

A Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China.

B National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, P. R. China.

C Corresponding author. Email: myqiang@nju.edu.cn

Australian Journal of Chemistry 64(7) 894-899 https://doi.org/10.1071/CH11053
Submitted: 30 January 2011  Accepted: 20 April 2011   Published: 19 July 2011

Abstract

Endocytosis is a basic pathway for nanoparticles to enter or leave cells. However, because of the complexity of the cell membrane, the mechanism of endocytosis is largely elusive. By dissipative particle dynamics (DPD), we investigate the wrapping and internalization processes of different particles (e.g., spheres and ellipsoids) by a lipid vesicle. It is found that rotation is possibly an important mechanism in the particle internalization process under a strong adhesive interaction, which can adjust the configuration of the nanoparticle to the lipid bilayer and facilitate the progress of the wrapping. Furthermore, the fission behaviour of the vesicle and the wrapped particle is also observed when the lipid domain is considered in the system. These simulation results give an insight into the nature of endocytosis.


References

[1]  A. Nel, L. L. Mädler, D. Velegol, T. Xia, E. M. V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, M. Thompson, Nat. Mater. 2009, 8, 543.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsFOqtL4%3D&md5=7bf60e3d46e60e5d35897fcdb939670aCAS |

[2]  Y. Xia, Nat. Mater. 2008, 7, 758.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFGhs7rP&md5=066286137de8d029b3b4fcd74746c104CAS |

[3]  R. F. Service, Science 2005, 310, 1132.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  A. Nel, T. Xia, L. Madler, N. Li, Science 2006, 311, 622.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptVyrsg%3D%3D&md5=6366d6074cd3387d37a72cc845716269CAS |

[5]  T. Xia, M. Kovochich, J. Brant, M. Hotze, J. Sempf, T. Oberley, C. Sioutas, J. I. Yeh, M. R. Wiesner, A. Nel, Nano Lett. 2006, 6, 1794.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xnt1Ggu78%3D&md5=fa1385f2c95ef78c4276e4a47cdec64eCAS |

[6]  C. A. Poland, R. Duffin, I. Kinloch, A. Maynard, W. A. H. Wallace, A. Seaton, V. Stone, S. Brown, W. MacNee, K. Donaldson, Nat. Nanotechnol. 2008, 3, 423.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFehs7o%3D&md5=1cef524d296315920bfe57dcabcec758CAS |

[7]  K. Yang, Y. Q. Ma, Nat. Nanotechnol. 2010, 5, 579.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVSrur4%3D&md5=4a47f435d766edce609bdce6a54a0657CAS |

[8]  P. R. Leroueil, S. A. Berry, K. Duthie, G. Han, V. M. Rotello, D. Q. McNerny, J. R. Baker, B. G. Orr, M. M. B. Holl, Nano Lett. 2008, 8, 420.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1Kjtg%3D%3D&md5=64e0bbb4bbac6d3d239b6d1355add6c8CAS |

[9]  S. P. Hong, P. R. Leroueil, E. K. Janus, J. L. Peters, M. M. Kober, M. T. Islam, B. G. Orr, J. R. Baker, M. M. B. Holl, Bioconjug. Chem. 2006, 17, 728.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktVSksr0%3D&md5=63d52053ed64b29d01ed7846b684854dCAS |

[10]  P. R. Leroueil, S. Hong, A. Mecke, J. R. Baker, B. G. Orr, M. M. B. Holl, Acc. Chem. Res. 2007, 40, 335.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvVylsLw%3D&md5=175c406d64ecd2482ad0b22e686d3249CAS |

[11]  H. Lee, R. G. Larson, J. Phys. Chem. B 2008, 112, 7778.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvFCiuro%3D&md5=f82f4f50b3c5c041185aa9e3e2c8d82bCAS |

[12]  E. J. Wallace, M. S. P. Sansom, Nano Lett. 2008, 8, 2751.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVOlsrY%3D&md5=07c6b57479bd82c7546fdaeb850a7308CAS |

[13]  M. Marsh, A. Helenius, Cell 2006, 124, 729.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1KltLk%3D&md5=835c6093299c4d6876b273829966a65dCAS |

[14]  S. X. Sun, D. Wirtz, Biophys. J. 2006, 90, L10.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlertrjF&md5=53510483a46d77781e123ff7440b8fe7CAS |

[15]  S. D. Conner, S. L. Schmid, Nature 2003, 422, 37.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1yit7Y%3D&md5=b4cfaaa32aa4340a03cb3811bc3cef88CAS |

[16]  A. Aderem, D. M. Underhill, Annu. Rev. Immunol. 1999, 17, 593.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtVWmtrg%3D&md5=304a5247482c614e5f20253ba38b34e3CAS |

[17]  R. C. May, L. M. Machesky, J. Cell Sci. 2001, 114, 1061.
         | 1:CAS:528:DC%2BD3MXivVKitLs%3D&md5=6f6fd8c59fe6abe5d28ab8f77ebf2f16CAS |

[18]  H. Gao, W. Shi, L. B. Freund, Proc. Natl. Acad. Sci. USA 2005, 102, 9469.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVaksbk%3D&md5=9696026e42f1853a6a7417de92fc743fCAS |

[19]  A. Verma, O. Uzun, Y. H. Hu, Y. Hu, H. S. Han, N. Watson, S. Chen, D. J. Irvine, F. Stellacci, Nat. Mater. 2008, 7, 588.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnslKqsrg%3D&md5=57449ed3a291a541760a990fab12f18eCAS |

[20]  S. E. A. Gratton, P. A. Ropp, P. D. Pohlhaus, J. C. Luft, V. J. Madden, M. E. Napier, J. M. DeSimone, Proc. Natl. Acad. Sci. USA 2008, 105, 11613.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVCnur%2FI&md5=271c528345b08ab1cd8bc959938fd8cdCAS |

[21]  J. A. Champion, S. Mitragotri, Proc. Natl. Acad. Sci. USA 2006, 103, 4930.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsVGls70%3D&md5=4f25432f7770cab900cfab3114477385CAS |

[22]  B. D. Chithrani, A. A. Ghazani, W. C. W. Chan, Nano Lett. 2006, 6, 662.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVCjsLk%3D&md5=896583579c2d0c67f786ae937f56b5abCAS |

[23]  W. Jiang, B. Y. S. Kim, J. T. Rutka, W. C. W. Chan, Nat. Nanotechnol. 2008, 3, 145.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFKgt74%3D&md5=94a097b3a44ecda6f56d0bdc16d2539dCAS |

[24]  P. J. Hoogerbrugge, J. M. V. A. Koelman, Europhys. Lett. 1992, 19, 155.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  P. Español, P. Warren, Europhys. Lett. 1995, 30, 191.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  J. C. Shillcock, R. Lipowsky, J. Chem. Phys. 2002, 117, 5048.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsVWmtLY%3D&md5=69b481373a71df138444e776734e0259CAS |

[27]  A. Grafmüller, J. C. Shillcock, R. Lipowsky, Phys. Rev. Lett. 2007, 98, 218101.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  M. Laradji, P. B. S. Kumar, Phys. Rev. Lett. 2004, 93, 198105.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  D. W. Li, X. Y. Liu, J. Chem. Phys. 2005, 122, 174909.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  K. Yang, Y. Q. Ma, J. Phys. Chem. B 2009, 113, 1048.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvFKitA%3D%3D&md5=d8d67f34c00646b5d639e539e615dd1fCAS |

[31]  K. Yang, X. Shao, Y. Q. Ma, Phys. Rev. E 2009, 79, 051924.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  R. D. Groot, P. B. Warren, J. Chem. Phys. 1997, 107, 4423.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvVensLg%3D&md5=a64aa23602ec58dd12c0db72f38776f2CAS |

[33]  M. J. A. Hore, M. Laradji, J. Chem. Phys. 2007, 126, 244903.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  K. A. Smith, D. Jasnow, A. C. Balazs, J. Chem. Phys. 2007, 127, 084703.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  M. P. Allen, Computer Simulation of Liquids 1987 (Clarendon Press: Oxford).

[36]  D. W. Li, X. Y. Liu, Y. P. Feng, J. Phys. Chem. B 2004, 108, 11206.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltVCntrY%3D&md5=960201cbee0a2065d06b4bbf21f0af78CAS |

[37]  L. B. Freund, Y. Lin, Biomaterials 2004, 52, 2455.

[38]  P. Decuzzi, M. Ferrari, Biomaterials 2007, 28, 2915.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1Clur4%3D&md5=1887e0ef094f4e3de010f6629361dedeCAS |

[39]  P. Decuzzi, M. Ferrari, Biophys. J. 2008, 94, 3790.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsF2htb4%3D&md5=cfcfca468247974374917f9ab8e556dfCAS |

[40]  S. Wu, H. Guo, J. Phys. Chem. B 2009, 113, 589.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFejurvK&md5=86cdbfb43a18673b0763c76a183a3360CAS |

[41]  S. Pogodin, N. K. H. Slater, V. A. Baulin, ACS Nano 2011, 5, 1141.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Cgsw%3D%3D&md5=061e9f415415aa8b4dd6691c78a036eaCAS |