Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Structures and Anatomical Distribution of Oxygenated Diterpenes in the Australian Nudibranch Chromodoris reticulata

Suciati A B , Lynette K. Lambert C and Mary J. Garson A D
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia.

B Faculty of Pharmacy, Airlangga University, Surabaya, East Java 60286, Indonesia.

C Centre for Advanced Imaging, The University of Queensland, Brisbane, Qld 4072, Australia.

D Corresponding author. Email: m.garson@uq.edu.au




Professor Mary Garson is a Professor of Chemistry at The University of Queensland. She graduated from The University of Cambridge, UK with a Ph.D. (1977) and MA (1978), after which she undertook postdoctoral studies funded by a Royal Society of London Overseas Research Fellowship at the Universita Cattolica, Rome (1978). She then returned to Cambridge as a college research fellow and tutor at New Hall (since renamed as Murray Edwards College) within the university. Next she worked as a medicinal chemist in the UK pharmaceutical industry before emigrating to Australia following the award of a Queen Elizabeth II Research Fellowship at James Cook University of North Queensland (1983–1986). Prior to joining The University of Queensland as a lecturer in 1990, she held a lecturing position at The University of Wollongong in NSW. In her academic research, Professor Garson has made distinguished contributions to the fields of terrestrial and marine natural products, biosynthesis, and chemical ecology over a 30-year period. She is widely recognized for her collaborative research with colleagues from South-East Asian countries, including Thailand, Indonesia, and the Philippines. Professor Garson has been Chair of the International Relations Committee, as well as President of the Queensland branch, of the Royal Australian Chemical Institute. She was Executive Secretary of the team organizing the World Chemistry Congress in Brisbane in 2001, and is currently co-chair of the organizing committee for the 27th International Symposium on the Chemistry of Natural Products. From 2002 to 2004, she was chair of Australian Science Innovations (previously known as the Australian Science Olympiads). She is currently a Titular member, and honorary Secretary, of Division III (organic and biomolecular) of IUPAC, and the Division proposes to appoint her as Vice President (2012–13) succeeding to the Division Presidency in 2014–2015. An unusual form of professional recognition is that a new species of marine flatworm that she first collected at Heron Island has been named Maritigrella marygarsonae.

Australian Journal of Chemistry 64(6) 757-765 https://doi.org/10.1071/CH11036
Submitted: 21 January 2011  Accepted: 16 March 2011   Published: 27 June 2011

Abstract

The structures and stereochemistry of six new diterpenes (16), two of which contain cyclic imine functionality, have been deduced by 2D NMR spectroscopy. The anatomical distribution of these, and of 17 other diterpenes (723) that were also isolated, has been investigated. The known compound aplyroseol-2 (14) was the major compound in the mantle tissue along with some dialdehydes, while the linear furan ambliofuran (7) was the only diterpene found solely in the internal organs. The presence of lactone-acetal-hemiacetal functionality in many of the isolated compounds is a consequence of the reactive dialdehydes present in the mollusc.


References

[1]  G. Cimino, A. Fontana, M. Gavagnin, Curr. Org. Chem. 1999, 3, 327.
         | 1:CAS:528:DyaK1MXltVSmt74%3D&md5=5e155b667106864b629fe6e2756c0fdaCAS |

[2]  M. Gavagnin, A. Fontana, Curr. Org. Chem. 2000, 4, 1201.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntVaqsw%3D%3D&md5=07f11d09a8a97ac7b8fbd550c8fe04f7CAS |

[3]  R. J. Andersen, K. Desjardins, K. Woods, in Molluscs: from Chemo-ecological Study to Biotechnological Application 2006, pp. 277–301 (Eds G. Cimino, M. Gavagnin) (Springer: New York, NY).

[4]  A. Fontana, in Biogenetic Proposals and Biosynthetic Studies on Secondary Metabolites of Opisthobranch Molluscs 2006, pp. 303–332 (Eds G. Cimino, M. Gavagnin) (Springer: New York, NY).

[5]  A. Fontana, P. Cavaliere, N. Ungur, L. D’Souza, P. S. Parameswaram, G. Cimino, J. Nat. Prod. 1999, 62, 1367.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlslOnurk%3D&md5=0260831356941f696a97547630656c3eCAS | 10543894PubMed |

[6]  G. Cimino, S. De Rosa, S. De Stephano, G. Sodano, G. Villani, Science 1983, 219, 1237.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhsVSrt7Y%3D&md5=90d7b4d2edf4a86c502159c433698e32CAS | 17771309PubMed |

[7]  A. Fontana, A. Tramice, A. Cutignano, G. d’Ippolito, M. Gavagnin, G. Cimino, J. Org. Chem. 2003, 68, 2405.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtlWju78%3D&md5=6c838900af066630711a6f710c98c415CAS | 12636409PubMed |

[8]  H. Gaspar, A. Cutignano, T. Ferreira, G. Calado, G. Cimino, A. Fontana, J. Nat. Prod. 2008, 71, 2053.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWisbrN&md5=e12191828060a4168b36643d45aabe68CAS | 19053515PubMed |

[9]  S. A. Morris, E. D. de Silva, R. J. Andersen, Can. J. Chem. 1991, 69, 768.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkvV2nt74%3D&md5=1855d27e04b023b81684c5a73d87a017CAS |

[10]  M. Gavagnin, R. R. Vardaro, C. Avila, G. Cimino, J. Ortea, J. Nat. Prod. 1992, 55, 368.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhsVymt7g%3D&md5=9de852ae02d55ebb982d865ba0f91ff9CAS | 1593284PubMed |

[11]  G. Cimino, A. Crispino, M. Gavagnin, G. Sodano, J. Nat. Prod. 1990, 53, 102.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksFKjsbo%3D&md5=32eccea3db9a28ddba52bc872a496150CAS |

[12]  R. Puliti, M. Gavagnin, G. Cimino, C. A. Mattia, L. Mazzarella, Acta Crystallogr. 1992, 48C, 2145.

[13]  T. Miyamoto, K. Sakamoto, K. Arao, T. Komori, R. Higuchi, T. Sasaki, Tetrahedron 1996, 52, 8187.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjslKntrg%3D&md5=43251375d656b7a94e3cf5bccf804c09CAS |

[14]  T. F. Molinski, D. J. Faulkner, J. Org. Chem. 1986, 51, 2601.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xkt1Wqtb0%3D&md5=c088630ca78053d621bce33ac6f779e1CAS |

[15]  P. Karuso, B. W. Skelton, W. C. Taylor, A. H. White, Aust. J. Chem. 1984, 37, 1081.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXkvVOlt7s%3D&md5=957f5c9e781b976cfdf624e7385eeba3CAS |

[16]  S. K. Graham, M. J. Garson, P. V. Bernhardt, J. Chem. Crystallogr. 2010, 40, 468.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1Cit7g%3D&md5=3fd2bb72803fad339cce34d55f5641f6CAS |

[17]  T. F. Molinski, D. J. Faulkner, H. Cun-Heng, G. D. Van Duyne, J. Clardy, J. Org. Chem. 1986, 51, 4564.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  S. C. Bobzin, D. J. Faulkner, J. Org. Chem. 1989, 54, 5727.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmt12hu78%3D&md5=c6d1020f3d3a34c1cf8f392299376317CAS |

[19]  M. J. Schnermann, C. M. Beaudry, A. V. Egorova, R. S. Polishchuk, C. Sütterlin, L. E. Overman, Proc. Natl. Acad. Sci. USA 2010, 107, 6158.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkslyntbw%3D&md5=a0f6ec3bf1858d2ace69f8d15909e1f0CAS |

[20]  K. W. L. Yong, A. A. Salim, M. J. Garson, Tetrahedron 2008, 64, 6733.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1KqtLk%3D&md5=fab5aa9c5f967de9e53c27bbc3371315CAS |

[21]  R. P. Walker, D. J. Faulkner, J. Org. Chem. 1981, 46, 1098.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXktVOmsr4%3D&md5=493ddd008575313ae5370a53f7654761CAS |

[22]  P. Karuso, W. C. Taylor, Aust. J. Chem. 1986, 39, 1629.
         | 1:CAS:528:DyaL2sXjtVahug%3D%3D&md5=7c1ba9164d554e07cd48b257d74bea14CAS |

[23]  P. Karuso, P. R. Bergquist, R. C. Cambie, J. S. Buckleton, G. R. Clark, C. E. F. Rickard, Aust. J. Chem. 1986, 39, 1643.
         | 1:CAS:528:DyaL2sXjtVahuw%3D%3D&md5=d30fc9f5b65bd0a33bc79c0e50b249b0CAS |

[24]  T. F. Molinski, D. J. Faulkner, J. Org. Chem. 1987, 52, 296.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmsVCruw%3D%3D&md5=a4cafa800d275580d80b5b0b90837b3eCAS |

[25]  M. R. Kernan, R. C. Cambie, P. R. Bergquist, J. Nat. Prod. 1990, 53, 724.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlsV2isb4%3D&md5=ff5309dbaa3c95f170a42da129947116CAS |

[26]  A. G. Gonzalez, D. M. Estrada, J. D. Martin, V. S. Martin, C. Perez, R. Perez, Tetrahedron 1984, 40, 4109.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXht12isLY%3D&md5=22be8093afcef2ffb8f308f11b593540CAS |

[27]  F. J. Schmitz, J. S. Chang, M. B. Hossain, D. van der Helm, J. Org. Chem. 1985, 50, 2862.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXks1ynurg%3D&md5=67dbb951bb3ebe1c923e4c18037001e1CAS |

[28]  W. C. Taylor, S. Toth, Aust. J. Chem. 1997, 50, 895.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXns1Sqsb0%3D&md5=2fe5e52526624e299535c8317086b42aCAS |

[29]  M. B. Ksebati, F. J. Schmitz, J. Org. Chem. 1987, 52, 3766.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkvFersbk%3D&md5=68193b8b005cbc0daccf380f0d7479b7CAS |

[30]  E. Zubía, M. Gavagnin, G. Scognamiglio, G. Cimino, G. B. Giusto, J. Nat. Prod. 1994, 57, 725.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  In the 1H NMR data for compound 7 of ref. [20], the signal for H13 is described as a td (J 12.8, 62 Hz); the revised description should be as a dt since there is only one 12.8 Hz coupling.

[32]  B. D. Morris, M. R. Prinsep, J. Nat. Prod. 1999, 62, 688.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitlCmsLs%3D&md5=12ee80dbb9f42d27b133fc5ee0189481CAS | 10346946PubMed |

[33]  P. M. Imamura, M. G. Sierra, E. A. Rúveda, J. Chem. Soc. Chem. Commun. 1981, 734.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmt1Siurs%3D&md5=b66f98450605d972ffde389da6079b40CAS |

[34]  T. W. Hambley, W. C. Taylor, S. Toth, Aust. J. Chem. 1997, 50, 391.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksFajurw%3D&md5=1a49dfc47666333bb8844e8ed3ac76ccCAS |

[35]  R. A. Keyzers, P. T. Northcote, M. T. Davies-Coleman, Nat. Prod. Rep. 2006, 23, 321.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVyrtL0%3D&md5=998050a11dbd7d13031b62e974829d69CAS | 16572231PubMed |

[36]  E. Manzo, M. Gavagnin, M. J. Somerville, S.-C. Mao, M. L. Ciavatta, E. Mollo, P. J. Schupp, M. J. Garson, Y.-W. Guo, G. Cimino, J. Chem. Ecol. 2007, 33, 2325.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtl2ks7rO&md5=cf13b12556e2c1cffb6a4f13b3589020CAS | 18000710PubMed |

[37]  N. Coleman, 1001 Nudibranchs: Catalogue of Indo-Pacific Sea Slugs 2001, p. 72 (Neville Coleman’s Underwater Geographic Pty Ltd: Springwood, QLD).