A Potentially Polymerizable Heterodinuclear FeIIIZnII Purple Acid Phosphatase Mimic. Synthesis, Characterization, and Phosphate Ester Hydrolysis Studies
Yoke Leng Michelle Zee A , Lawrence R. Gahan A B and Gerhard Schenk AA School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia.
B Corresponding author. Email: gahan@uq.edu.au
Australian Journal of Chemistry 64(3) 258-264 https://doi.org/10.1071/CH10424
Submitted: 24 November 2010 Accepted: 16 February 2011 Published: 11 March 2011
Abstract
An analogue of the purple acid phosphatase biomimetic 2-((bis(pyridin-2-ylmethyl)amino)methyl)-6-(((2-hydroxybenzyl)(pyridin-2-ylmethyl)amino)methyl)-4-methylphenol has been synthesized. The analogue, 2-((bis(pyridin-2-ylmethyl)amino)methyl)-6-(((2-hydroxy-4-(4-vinylbenzyloxy)benzyl)(pyridin-2-ylmethyl)amino)methyl)-4-methylphenol (H2BPBPMPV) possesses a pendant olefin suitable for copolymerization. Complexation with FeIII/ZnII resulted in the complex [FeIIIZnII(BPBPMPV)(CH3COO)2](ClO4), characterized with mass spectrometry, microanalysis, UV/vis, and IR spectrometry. The catalytic activity of the complex toward bis-(2,4-dinitrophenyl) phosphate was determined, resulting in Km of 4.1 ± 0.6 mM, with kcat 3.8 ± 0.2 × 10–3 s–1 and a bell-shaped pH–rate profile with pKa values of 4.31, 5.66, 8.96, the profile exhibiting residual activity above pH 9.5.
References
[1] N. Mitić, S. J. Smith, A. Neves, L. W. Guddat, L. R. Gahan, G. Schenk, Chem. Rev. 2006, 106, 3338.| Crossref | GoogleScholarGoogle Scholar | 16895331PubMed |
[2] D. E. Wilcox, Chem. Rev. 1996, 96, 2435.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmt1Gnu7s%3D&md5=2ffc421d865d7518fb9f235104a4270bCAS | 11848832PubMed |
[3] L. G. Gahan, S. J. Smith, A. Neves, G. Schenk, Eur. J. Inorg. Chem. 2009, 2745.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvV2gt7w%3D&md5=bbbf25a5d4ec7597c96411abe4d6c72eCAS |
[4] A. Durmus, C. Eicken, B. H. Sift, A. Kratel, R. Kappl, J. Huttermann, B. Krebs, Eur. J. Biochem. 1999, 260, 709.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXit1OntLc%3D&md5=0b36fab1e24496fda56ca32b3a092f33CAS | 10102999PubMed |
[5] J. L. Beck, L. A. McConachie, A. C. Summors, W. N. Arnold, J. de Jersey, B. Zerner, Biochim. Biophys. Acta 1986, 869, 61.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XmsVKgsg%3D%3D&md5=431e84c77b7aed30b8c76279a2aa7e15CAS |
[6] G. Schenk, Y. B. Ge, L. E. Carrington, C. J. Wynne, I. R. Searle, B. J. Carroll, S. Hamilton, J. de Jersey, Arch. Biochem. Biophys. 1999, 370, 183.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmt12itbk%3D&md5=968b2a38b8b0153624d0a1ef55aabaa1CAS | 10510276PubMed |
[7] G. Schenk, C. L. Boutchard, L. E. Carrington, C. J. Noble, B. Moubaraki, K. S. Murray, J. de Jersey, G. R. Hanson, S. Hamilton, J. Biol. Chem. 2001, 276, 19084.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkt12rsr0%3D&md5=9251847606a93ff6362e35091410a31fCAS | 11278566PubMed |
[8] H. Nakazato, T. Okamoto, M. Nishikoori, K. Washio, N. Morita, K. Haraguchi, G. A. Thompson, H. Okuyama, Plant Physiol. 1998, 118, 1015.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsFektb8%3D&md5=2c5be6c523580e26c7a8fec669b413d4CAS | 9808746PubMed |
[9] N. Sträter, T. Klabunde, P. Tucker, H. Witzel, B. Krebs, Science 1995, 268, 1489.
| Crossref | GoogleScholarGoogle Scholar | 7770774PubMed |
[10] B. C. Antanaitis, P. Aisen, H. R. Lilienthal, J. Biol. Chem. 1983, 258, 3166.
| 1:CAS:528:DyaL3sXhtl2htrk%3D&md5=cc039fc2e4d895c78c641fe02a942095CAS | 6298226PubMed |
[11] B. A. Averill, J. C. Davis, S. Burman, T. Zirino, J. Sandersloehr, T. M. Loehr, J. T. Sage, P. G. Debrunner, J. Am. Chem. Soc. 1987, 109, 3760.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXktVehtr8%3D&md5=26ac4b3d59fbe129995d423155e3ae4eCAS |
[12] Y. S. Yang, J. M. McCormick, E. I. Solomon, J. Am. Chem. Soc. 1997, 119, 11832.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnvVCmsrg%3D&md5=d42d21cd615657fc2252560a295d5a5aCAS |
[13] A. Neves, M. A. de Brito, V. Drago, K. Griesar, W. Haase, Inorg. Chim. Acta 1995, 237, 131.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXoslGmsrk%3D&md5=837cc643ed1e3314752823f5f59de015CAS |
[14] M. Lanznaster, A. Neves, A. J. Bortoluzzi, B. Szpoganicz, E. Schwingel, Inorg. Chem. 2002, 41, 5641.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsVens7Y%3D&md5=b1a1eff0d1c1baaeb9c9b7f8a550778fCAS | 12401063PubMed |
[15] G. Schenk, T. W. Elliott, E. Leung, L. E. Carrington, N. Mitić, L. G. Gahan, L. W. Guddat, BMC Struct. Biol. 2008, 8, 6.
| Crossref | GoogleScholarGoogle Scholar | 18234116PubMed |
[16] I. M. Klotz, J. Suh, in Artificial Enzymes (Ed. R. Breslow) 2005 (Wiley-VCH: Weinheim).
[17] C. Piovezan, R. Jovito, A. J. Bortoluzzi, H. Terenzi, F. L. Fischer, P. C. Severino, C. T. Pich, G. G. Azzolini, R. A. Peralta, L. M. Rossi, A. Neves, Inorg. Chem. 2010, 49, 2580.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitFehtbs%3D&md5=ab9ddf1f48487c7e6d1eb2fa0007fdd7CAS | 20163108PubMed |
[18] C.-C. Hu, W.-H. Chen, C.-Y. Liu, J.-L. Chen, J. Inclus. Phenom. Mol. Recog. 1996, 23, 289.
| Crossref | GoogleScholarGoogle Scholar |
[19] M. G. Gichinga, S. Striegler, N. A. Dunaway, J. D. Barnett, Polymer 2010, 51, 606.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlyrtL8%3D&md5=596d1d0aaa86e9cbcf2f0b8c0f1b96b9CAS |
[20] S. Striegler, M. G. Gichinga, M. Dittel, Org. Lett. 2008, 10, 241.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVejtbnE&md5=85224c164a7902830b94a82926c8ecc9CAS | 18081306PubMed |
[21] M. Monroe, Molecular Weight Calculator, Version 6.45 2004. Available at: http://www.alchemistmatt.com/ (accessed 22 February 2011).
[22] R. T. Paine, Y.-C. Tan, X.-M. Gan, Inorg. Chem. 2001, 40, 7009.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXot1elsbg%3D&md5=7bbe5499fb333bf24422c12ae6bcae26CAS | 11754283PubMed |
[23] S. C. Batista, A. Neves, A. J. Bortoluzzi, I. Vencato, R. A. Peralta, B. Szpoganicz, V. V. E. Aires, H. Terenzi, P. C. Severino, Inorg. Chem. Commun. 2003, 6, 1161.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsl2nsLg%3D&md5=97db40d3e3abc1eaad3e324943ec613aCAS |
[24] SigmaPlot for Windows, Version 10 (Systat Software Inc.: San Jose, CA).
[25] G. B. Deacon, R. J. Phillips, Coord. Chem. Rev. 1980, 33, 227.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXjvVOqsw%3D%3D&md5=7309f80da9a9a3f327fc47f3e07ff0b0CAS |
[26] I. H. Segel, Enzymes Kinetics Behavior and Analysis of Rapid Equilibrium and Steady-state Enzyme Systems 1975 (John Wiley and Sons, Inc.: New York, NY).
[27] A. Kantacha, R. Buchholz, S. J. Smith, G. Schenk, L. R. Gahan, J. Biol. Inorg. Chem. 2011, 16, 25.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVOnurfM&md5=a9a4c5958fb260997c37b2841f10f97aCAS | 20798967PubMed |
[28] A. Neves, M. Lanznaster, A. J. Bortoluzzi, R. A. Peralta, A. Casellato, E. E. Castellano, P. Herrald, M. J. Riley, G. Schenk, J. Am. Chem. Soc. 2007, 129, 7486.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFOktLg%3D&md5=72e251b462f0e3c66b9cf10e6cfd5b52CAS | 17518469PubMed |
[29] M. Jarenmark, H. Carlsson, V. M. Trukhan, M. Haukka, S. E. Canton, M. Walczak, W. Fullagar, V. Sundstrom, E. Nordlander, Inorg. Chem. Commun. 2010, 13, 334.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitF2ltLo%3D&md5=2e1c9569d185ab8afa11237e99c3a853CAS |
[30] A. S. Borovik, L. Que, V. Papaefthymiou, E. Munck, L. F. Taylor, O. P. Anderson, J. Am. Chem. Soc. 1988, 110, 1986.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXht1egt74%3D&md5=f72eebb60e87fb4f8ba06e0b47006934CAS |
[31] M. Ghiladi, C. J. McKenzie, A. Meier, A. K. Powell, J. Ulstrup, S. Wocadlo, Dalton Trans. 1997, 4011.
| 1:CAS:528:DyaK2sXntlOmtbk%3D&md5=5d3ca7cf070dee0007e6e54dff92e908CAS |
[32] S. Albedyhl, M. T. Averbuch-Pouchot, C. Belle, B. Krebs, J. L. Pierre, E. Saint-Aman, S. Torelli, Eur. J. Inorg. Chem. 2001, 1457.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktFygurg%3D&md5=e1652e95bc962845d993f10d82943c6dCAS |
[33] C. Belle, I. Gautier-Luneau, L. Karmazin, J. L. Pierre, S. Albedyhl, B. Krebs, M. Bonin, Eur. J. Inorg. Chem. 2002, 3087.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xptl2iu7Y%3D&md5=7efcee621036b76777c72f37e75d711eCAS |
[34] A. S. Borovik, V. Papaefthymiou, L. F. Taylor, O. P. Anderson, L. Que, J. Am. Chem. Soc. 1989, 111, 6183.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXks12ku7Y%3D&md5=adc9092c0065b75370023dd786ebdb35CAS |
[35] J. J. Danford, P. Dobrowolski, L. M. Berreau, Inorg. Chem. 2009, 48, 11352.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1KjtLbI&md5=1f50bfd268b4a14f35197cc630896303CAS | 19827773PubMed |
[36] R. Jovito, A. Neves, A. J. Bortoluzzi, M. Lanznaster, V. Drago, W. Haase, Inorg. Chem. Commun. 2005, 8, 323.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1OnsLc%3D&md5=7bdf753888fec7c651420f4cdfcfe3b9CAS |
[37] S. Mulrooney, T. Zakharian, R. A. Schaller, R. P. Hausinger, Arch. Biochem. Biophys. 2001, 394, 280.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsVGns74%3D&md5=dc2273d2f12346a0e866af35af8fe9acCAS | 11594743PubMed |
[38] B. Krajewska, S. Ciurli, Plant Physiol. Biochem. 2005, 43, 651.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvFent7o%3D&md5=5a4e8c4407555599baf5a971e5d3895cCAS | 16023357PubMed |
[39] S. J. Smith, A. Casellato, K. S. Hadler, N. Mitić, M. J. Riley, A. J. Bortoluzzi, B. Szpoganicsz, G. Schenk, A. Neves, L. R. Gahan, J. Biol. Inorg. Chem. 2007, 12, 1207.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKrsb3K&md5=8d913552989ae48a308cfbdaa8d03fe5CAS | 17701232PubMed |
[40] K. S. Hadler, E. A. Tanifum, S. H. Yip, N. Mitić, L. W. Guddat, C. J. Jackson, L. R. Gahan, K. Nguyen, P. D. Carr, D. L. Ollis, A. C. Hengge, J. A. Larrabee, G. Schenk, J. Am. Chem. Soc. 2008, 130, 14129.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Sjt7vE&md5=10cb2b8baea52b1817f245731c96433aCAS | 18831553PubMed |
[41] K. S. Hadler, N. Mitić, F. Ely, G. R. Hanson, L. G. Gahan, J. A. Larrabee, D. L. Ollis, G. Schenk, J. Am. Chem. Soc. 2009, 131, 11900.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlGgurw%3D&md5=3143eedc9cf91c39a2f7f7064af6d73dCAS | 19653693PubMed |
[42] N. Mitić, C. Noble, L. Gahan, G. Hanson, G. Schenk, J. Am. Chem. Soc. 2009, 131, 8173.
| Crossref | GoogleScholarGoogle Scholar | 19507905PubMed |
[43] M. Lanznaster, A. Neves, A. J. Bortoluzzi, V. V. E. Aires, B. Szpoganicz, H. Terenzi, P. C. Severino, J. M. Fuller, S. C. Drew, L. R. Gahan, G. R. Hanson, M. J. Riley, G. Schenk, J. Biol. Inorg. Chem. 2005, 10, 319.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVKnt7o%3D&md5=415fbe365478438407b75b6f4f40dbd2CAS | 15843985PubMed |
[44] G. Schenk, R. A. Peralta, S. C. Batista, A. J. Bortoluzzi, B. Szpoganics, A. K. Dick, P. Herrald, G. R. Hanson, R. K. Szilagyi, M. J. Riley, L. R. Gahan, A. Neves, J. Biol. Inorg. Chem. 2008, 13, 139.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitF2ks7Y%3D&md5=8ecf9246bd36c276b311a904e3623bbdCAS | 17938975PubMed |