Mixed [2.2]Cyclophanes of Pyrene and Benzene
Rudolf J. Vermeij A , David O. Miller B , Louise N. Dawe B , Ivan Aprahamian C D , Tuvia Sheradsky C E , Mordecai Rabinovitz C and Graham J. Bodwell A FA Department of Chemistry, Memorial University, St. John’s, NL A1B 3X7, Canada.
B CREAIT Network, Memorial University, St. John’s, NL A1B 3S5, Canada.
C Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
D Present address: Department of Chemistry, Dartmouth College, 6128 Burke Laboratory, Hanover, NH 03755, USA.
E Deceased.
F Corresponding author. Email: gbodwell@mun.ca
Australian Journal of Chemistry 63(12) 1703-1716 https://doi.org/10.1071/CH10356
Submitted: 28 September 2010 Accepted: 22 October 2010 Published: 6 December 2010
Abstract
An examination of the literature on [2.2]cyclophanes reveals a loose relationship between the relative sizes of the two ‘half-cyclophanes’ (as measured by the parameter Δd) and the limitations of the dominant general synthetic approaches. Direct coupling methods tend to be successful only for systems with Δd values below 1.0 Å, whereas ring-contraction-based approaches are usually viable for systems with Δd values up to 2.0 Å. For the very few known systems with Δd values greater than 2.0 Å, aromatization-based approaches are the only ones that have been successful. The syntheses of two [2.2]cyclophanes with very large Δd values, [2]paracyclo[2](2,7)pyrenophane (17) (Δd = 4.25 Å) and [2]metacyclo[2](2,7)pyrenophane (18) (Δd = 5.04 Å) are presented here. The syntheses hinge on a valence isomerization/dehydrogenation reaction. The crystallographically determined bend angle, θ, for 18 is 96.1°. Cyclophane 18 undergoes a degenerate conformational flip, the energy barrier for which was determined to be 18.9 kcal mol–1 by DNMR.
References
[1] For leading monographs and reviews about cyclophanes, see: B. H. Smith, Bridged Aromatic Compounds 1964 (Academic Press: New York, NY).Cyclophanes, Vols. 1 and 2 1983 (Eds P. M. Keehn, S. M. Rosenfeld) (Academic Press: New York, NY).
Top. Curr. Chem. 1983, 113–115.
H. Hopf, C. Marquard, in Strain and Its Implications in Organic Chemistry 1989, pp. 297–332 (Eds A. de Meijere, S. Blechert) (Kluwer Academic Publishers: Dordrecht).
F. Diederich, Cyclophanes 1991 (Royal Society of Chemistry: London).
F. Vögtle, Cyclophane Chemistry 1993 (Wiley: New York, NY).
(g) 1994 Top. Curr. Chem. 172.
(h) V. V. Kane, W. H. de Wolf, F. Bickelhaupt, Tetrahedron 1994, 50, 4575.
| Crossref | GoogleScholarGoogle Scholar |
(i) G. J. Bodwell, Angew. Chem. Int. Ed. Engl. 1996, 35, 2085.
| Crossref | GoogleScholarGoogle Scholar |
(j) A. de Meijere, B. König, Synlett 1997, 1221.
| Crossref | GoogleScholarGoogle Scholar |
G. J. Bodwell, in Organic Synthesis Highlights IV 2000, pp. 289–300 (Ed. H. G. Schmalz) (Wiley-VCH: New York, NY).
H. Hopf, Classics in Hydrocarbon Chemistry 2000 (Wiley-VCH: Weinheim).
(m) G. J. Bodwell, Angew. Chem. Int. Ed. 2002, 41, 4003.
| Crossref | GoogleScholarGoogle Scholar |
(n) S. E. Gibson, J. D. Knight, Org. Biomol. Chem. 2003, 1, 1256.
| Crossref | GoogleScholarGoogle Scholar |
Modern Cyclophane Chemistry 2004 (Eds R. Gleiter, H. Hopf) (Wiley-VCH: Weinheim).
(p) G. J. Rowlands, Org. Biomol. Chem. 2008, 6, 1527.
| Crossref | GoogleScholarGoogle Scholar |
[2] For an overview of ring-contraction reactions for dithia[3.3]cyclophanes, see: Mitchell R. H. , Heterocycles 1978, 11, 563.
[3] For a discussion of the issue of building up strain in a stepwise fashion, see: Eisenberg D. , Shenhar R. , Rabinovitz M. , Chem. Soc. Rev. 2010, 39, 2879.
[4] For initial reports, see: Cram D. J. , Steinberg H. , J. Am. Chem. Soc. 1951, 73, 5691.
Brown C. J. , Farthing A. C. , Nature 1949, 164, 915.
[5] For the initial report, see: Pellegrin M. M. , Recl. Trav. Chim. Pays-Bas 1899, 18, 457. For a summary of synthetic approaches, see: ref. 1e.
[6] T. Umemoto, T. Kawashima, Y. Sakata, S. Misumi, Tetrahedron Lett. 1975, 16, 463.
| Crossref | GoogleScholarGoogle Scholar |
[7] A. Iwama, T. Toyoda, M. Yoshida, T. Otsubo, Y. Sakata, S. Misumi, Bull. Chem. Soc. Jpn. 1978, 51, 2988.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXlsVSlsw%3D%3D&md5=4d307fe4c5fff1ed1b4e8994d2282bffCAS |
[8] N. Osaka, S. Mizogami, T. Otsubo, Y. Sakata, S. Misumi, Chem. Lett. 1974, 3, 515.
| Crossref | GoogleScholarGoogle Scholar |
[9] M. W. Haenel, Tetrahedron Lett. 1977, 18, 4191.
| Crossref | GoogleScholarGoogle Scholar |
[10] R. G. H. Kirrstetter, H. A. Staab, Liebigs Ann. Chem. 1979, 899.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXlvVCqsg%3D%3D&md5=1da799c2275fe1e985ea17dda47f7219CAS |
[11] For the initial report, see: Cram D. J. , Helgeson R. C. , Lock D. , Singer L. A. , J. Am. Chem. Soc. 1966, 88, 1324. For a summary of synthetic approaches, see: ref. 1e.
[12] D. J. Cram, G. R. Knox, J. Am. Chem. Soc. 1961, 83, 2204.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXhtVGkurY%3D&md5=50b4d3f87aeee3916efc7fed90a5cbafCAS |
[13] (a) T. Kawashima, T. Otsubo, Y. Sakata, S. Misumi, Tetrahedron Lett. 1978, 19, 1063.
| Crossref | GoogleScholarGoogle Scholar |
(b) Y. Fukazawa, M. Sobukawa, S. Ito, Tetrahedron Lett. 1982, 23, 2129.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) M. W. Haenel, Tetrahedron Lett. 1978, 19, 4007.
| Crossref | GoogleScholarGoogle Scholar |
(b) W. W. Haenel, B. Lintner, R. Benn, A. Rufinska, G. Schroth, C. Krueger, S. Hirsch, H. Irngartiner, D. Schweitzer, Chem. Ber. 1985, 118, 4884.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) J. T. Craig, B. Halton, S.-F. Lo, Aust. J. Chem. 1975, 28, 913.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXktV2lsrk%3D&md5=574beb4d299711742c6a98c1b1175eb4CAS |
(b) P. J. Jessup, J. A. Reiss, Aust. J. Chem. 1977, 30, 843.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) J. R. Davy, M. N. Iskander, J. A. Reiss, Tetrahedron Lett. 1978, 19, 4085.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. R. Davy, M. N. Iskander, J. A. Reiss, Aust. J. Chem. 1979, 32, 1067.
| Crossref | GoogleScholarGoogle Scholar |
[17] (a) T. J. Seiders, K. K. Baldridge, J. S. Siegel, J. Am. Chem. Soc. 1996, 118, 2754.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtleitLk%3D&md5=3760c5d336c7ee1a8f769c1919e22185CAS |
(b) T. J. Seiders, K. K. Baldridge, J. S. Siegel, Tetrahedron 2001, 57, 3737.
| Crossref | GoogleScholarGoogle Scholar |
[18] G. J. Bodwell, L. Ernst, M. Haenel, H. Hopf, Angew. Chem. Int. Ed. Engl. 1989, 28, 455.
| Crossref | GoogleScholarGoogle Scholar |
[19] (a) Y. Tobe, M. Kawaguchi, K. Kakiuchi, K. Naemura, J. Am. Chem. Soc. 1993, 115, 1173.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhvFWgs7k%3D&md5=7fb8026f1ca19807e152632f70f58c8fCAS |
(b) G. J. Bodwell, L. Ernst, H. Hopf, Chem. Ber. 1989, 122, 1013.
| Crossref | GoogleScholarGoogle Scholar |
[20] G. J. Bodwell, D. O. Miller, R. J. Vermeij, Org. Lett. 2001, 3, 2093.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjslGls7Y%3D&md5=012e0bd8b3b450416075c67b7c4692e0CAS |
[21] M. K. Cyrański, Chem. Rev. 2005, 105, 3773.
| Crossref | GoogleScholarGoogle Scholar | 16218567PubMed |
[22] (a) G. J. Bodwell, T. J. Houghton, J. W. J. Kennedy, M. R. Mannion, Angew. Chem. Int. Ed. Engl. 1996, 35, 1320.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XktlSlurs%3D&md5=70c939285b25d1d135b8822e65a1b68bCAS |
(b) G. J. Bodwell, J. N. Bridson, T. J. Houghton, J. W. J. Kennedy, M. R. Mannion, Chemistry 1999, 5, 1823.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. J. Bodwell, J. J. Fleming, M. R. Mannion, D. O. Miller, J. Org. Chem. 2000, 65, 5360.
| Crossref | GoogleScholarGoogle Scholar |
(d) G. J. Bodwell, J. J. Fleming, D. O. Miller, Tetrahedron 2001, 57, 3577.
| Crossref | GoogleScholarGoogle Scholar |
(e) I. Aprahamian, G. J. Bodwell, J. J. Fleming, G. P. Manning, M. R. Mannion, T. Sheradsky, R. J. Vermeij, M. Rabinovitz, J. Am. Chem. Soc. 2003, 125, 1720.
| Crossref | GoogleScholarGoogle Scholar |
(f) G. J. Bodwell, J. N. Bridson, M. K. Cyrański, J. W. J. Kennedy, T. M. Krygowski, M. R. Mannion, D. O. Miller, J. Org. Chem. 2003, 68, 2089.
| Crossref | GoogleScholarGoogle Scholar |
(g) I. Aprahamian, G. J. Bodwell, J. J. Fleming, G. P. Manning, M. R. Mannion, T. Sheradsky, R. J. Vermeij, M. Rabinovitz, Angew. Chem. Int. Ed. 2003, 42, 2547.
| Crossref | GoogleScholarGoogle Scholar |
(h) R. Y. Lai, J. J. Fleming, B. L. Merner, R. J. Vermeij, G. J. Bodwell, A. J. Bard, J. Phys. Chem. A 2004, 108, 376.
| Crossref | GoogleScholarGoogle Scholar |
(i) I. Aprahamian, G. J. Bodwell, J. J. Fleming, G. P. Manning, M. R. Mannion, B. L. Merner, T. Sheradsky, R. J. Vermeij, M. Rabinovitz, J. Am. Chem. Soc. 2004, 126, 6765.
| Crossref | GoogleScholarGoogle Scholar |
(j) B. Zhang, G. P. Manning, M. A. Dobrowolski, M. K. Cyrański, G. J. Bodwell, Org. Lett. 2008, 10, 273.
| Crossref | GoogleScholarGoogle Scholar |
(k) M. A. Dobrowolski, M. K. Cyrański, B. L. Merner, G. J. Bodwell, J. Wu, P. v. R. Schleyer, J. Org. Chem. 2008, 73, 8001.
| Crossref | GoogleScholarGoogle Scholar |
(l) B. L. Merner, L. N. Dawe, G. J. Bodwell, Angew. Chem. Int. Ed. 2009, 48, 5487.
| Crossref | GoogleScholarGoogle Scholar |
[23] (a) F. Vögtle, A. Ostrowicki, B. Begemann, M. Jansen, M. Nieger, E. Niecke, Chem. Ber. 1990, 123, 169.
| Crossref | GoogleScholarGoogle Scholar |
(b) T. Yamato, A. Miyazawa, M. Tashiro, J. Chem. Soc., Perkin Trans. 1 1993, 3127.
| Crossref | GoogleScholarGoogle Scholar |
[24] G. J. Bodwell, T. J. Houghton, H. E. Koury, B. Yarlagadda, Synlett 1995, 751.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXns1Whurs%3D&md5=baf99efb9238f74d4176f0ceb0298755CAS |
[25] For definitions of the angles α and β as they pertain to bent benzene rings in paracyclophanes and metacyclophanes, see: P. M. Keehn in ref. 1b, Vol. 1, Ch. 3, pp. 69–232.
[26] W. Anker, G. W. Bushnell, R. H. Mitchell, Can. J. Chem. 1979, 57, 3080.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXmt1Sksrg%3D&md5=5e5281d8b03921736201eb36c18ca2b7CAS |
[27] (a) C. A. Hunter, J. K. M. Sanders, J. Am. Chem. Soc. 1990, 112, 5525.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksVShur8%3D&md5=04dea804b7167bda743e9e3038d44880CAS |
(b) C. A. Hunter, Chem. Soc. Rev. 1994, 23, 101.
| Crossref | GoogleScholarGoogle Scholar |
(c) W. B. Jennings, B. M. Farrell, J. F. Malone, Acc. Chem. Res. 2001, 34, 885.
| Crossref | GoogleScholarGoogle Scholar |
[28] F. Vögtle, P. Neumann, Angew. Chem. Int. Ed. Engl. 1972, 11, 73.
| Crossref | GoogleScholarGoogle Scholar |
[29] C. Ammann, P. Meier, A. E. Merbach, J. Magn. Reson. 1982, 46, 319.
| 1:CAS:528:DyaL38XhtlSrtro%3D&md5=7f58ddfd083dacccd5cdb76173625e22CAS |
[30] S. Takahashi, Y. Kuroyama, K. Sonogashira, N. Hagihara, Synthesis 1980, 627.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXjvVSi&md5=1219342e090ea0c955d1f3d1838d143dCAS |
[31] For details about the nomenclature of this compound, see: Josten W. , Neumann S. , Vögtle F. , Hägele K. , Przybylski M. , Beer F. , Müllen K. , Chem. Ber. 1994, 127, 2089.
(b) G. Hohner, F. Vögtle, Chem. Ber. 1977, 110, 3052.
| Crossref | GoogleScholarGoogle Scholar |