Electron Paramagnetic Resonance Spectroscopic Characterization of α,2- and α,4-Didehydrotoluene
Patrik Neuhaus A , Stefan Henkel A and Wolfram Sander A BA Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
B Corresponding author. Email: wolfram.sander@rub.de
Australian Journal of Chemistry 63(12) 1634-1637 https://doi.org/10.1071/CH10348
Submitted: 21 September 2010 Accepted: 22 October 2010 Published: 6 December 2010
Abstract
The elusive diradicals α,2- and α,4-didehydrotoluene 1 and 3, have been generated by photolysis of matrix-isolated 2-iodobenzyl iodide 7 and 4-iodobenzyl iodide 8, respectively. Diradical 3 could also be synthesized by flash vacuum thermolysis of 8, with subsequent trapping of the products in argon at 5 K. The diradicals in their triplet ground states were characterized by electron paramagnetic resonance spectroscopy. The triplet ground states were in accordance with previous theoretical calculations for these species.
References
[1] G. L. Closs, L. R. Kaplan, V. I. Bendall, J. Am. Chem. Soc. 1967, 89, 3376.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXkvF2gsbk%3D&md5=878532f5b3cf39035c061200bcc69e22CAS |
[2] P. G. Wenthold, S. G. Wierschke, J. J. Nash, R. R. Squires, J. Am. Chem. Soc. 1994, 116, 7378.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltVOksr4%3D&md5=2e56fd6cd378a1d1ef35c40d8377b04dCAS |
[3] P. G. Wenthold, S. G. Wierschke, J. J. Nash, R. R. Squires, J. Am. Chem. Soc. 1994, 116, 7378.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltVOksr4%3D&md5=2e56fd6cd378a1d1ef35c40d8377b04dCAS |
[4] J. Grafenstein, D. Cremer, Phys. Chem. Chem. Phys. 2000, 2, 2091.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtVersrc%3D&md5=35615d40033204fe202ba55ecb7b9088CAS |
[5] J. Cabrero, N. Ben-Amor, R. Caballol, J. Phys. Chem. A 1999, 103, 6220.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksVWks7w%3D&md5=df4f3ac4dc831353859218493fb07abbCAS |
[6] A. G. Myers, E. Y. Kuo, N. S. Finney, J. Am. Chem. Soc. 1989, 111, 8057.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlslegtb4%3D&md5=ad40f795289408b0dce8c9556aca090eCAS |
[7] C. F. Logan, J. C. Ma, P. Chen, J. Am. Chem. Soc. 1994, 116, 2137.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhsVOrtr4%3D&md5=4029fe5fe97658bed399e4b874a5b846CAS |
[8] W. Sander, H. Wandel, G. Bucher, J. Grafenstein, E. Kraka, D. Cremer, J. Am. Chem. Soc. 1998, 120, 8480.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvF2nu70%3D&md5=4f297a5e7f48b14b029c03fc56449373CAS |
[9] R. Marquardt, A. Balster, W. Sander, E. Kraka, D. Cremer, J. G. Radziszewski, Angew. Chem. Int. Ed. 1998, 37, 955.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtVGitLw%3D&md5=0739fb200b7d6e2ac160911df6450b2eCAS |
[10] H. H. Wenk, W. Sander, Eur. J. Org. Chem. 2002, 3927.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptlGkt7k%3D&md5=35ef4731c2de5d7d48a56e388d408b03CAS |
[11] H. H. Wenk, A. Balster, W. Sander, D. A. Hrovat, W. T. Borden, Angew. Chem. Int. Ed. Engl. 2001, 40, 2295.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVWnsL4%3D&md5=824b5a7eb37b7fbf79b4b21df59f09afCAS | 11433499PubMed |
[12] S. Venkataramani, M. Winkler, W. Sander, Angew. Chem. Int. Ed. Engl. 2005, 44, 6306.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGlsr7O&md5=db896e632cb6c266640ff74fdb6da2feCAS | 16196083PubMed |
[13] S. Venkataramani, M. Winkler, W. Sander, Angew. Chem. Int. Ed. Engl. 2007, 46, 4888.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsFyrtbY%3D&md5=dd52a9151508d18ac90b914d925c30a9CAS | 17568464PubMed |
[14] P. Neuhaus, D. Grote, W. Sander, J. Am. Chem. Soc. 2008, 130, 2993.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVamt70%3D&md5=285db623b5d74203d5e76d1972c21c00CAS | 18278907PubMed |
[15] 308 nm photolysis of matrix-isolated 3-iodobenzyl iodide does not give any EPR signals, which could be assigned to a triplet state.
[16] W. Sander, D. Grote, S. Kossmann, F. Neese, J. Am. Chem. Soc. 2008, 130, 4396.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFOnurY%3D&md5=0bd4d4e0b429b2decef82d37a5ec5564CAS | 18327939PubMed |
[17] D. Grote, C. Finke, S. Kossmann, F. Neese, W. Sander, Chemistry 2010, 16, 4496.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkslOjtrc%3D&md5=1d3147d2d73ea60f881135bffc8af0abCAS | 20232440PubMed |
[18] E. Wasserman, R. W. Murray, J. Am. Chem. Soc. 1964, 86, 4203.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXhtlSqtA%3D%3D&md5=5b2dcfc1ea581d6b3cbcc6d514490195CAS |
[19] W. Sander, W. Mueller, R. Sustmann, Angew. Chem. 1988, 100, 577.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXksFCit7c%3D&md5=53828ef13e147c8f458f22237132a2e1CAS |
[20] W. Sander, G. Bucher, F. Reichel, D. Cremer, J. Am. Chem. Soc. 1991, 113, 5311.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkt1yktro%3D&md5=6476ba8a7cbbe98a8f06b3336062e06cCAS |
[21] M. Griffin, A. Muys, C. Noble, D. Wang, C. Eldershaw, K. E. Gates, K. Burrage, G. R. Hanson, Molecular. Phys. Rep. 1999, 26, 60.
| 1:CAS:528:DC%2BD3cXmslWltLw%3D&md5=ac9d0611876f39f8aea36ab0cf458eb8CAS |