Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

UV-photoelectron Spectroscopy of Unhindered Germylenes and Carbon-arsenic Multiple-bonded Species*

Anna Chrostowska A B , Alain Dargelos A and Alain Graciaa A
+ Author Affiliations
- Author Affiliations

A Institut Pluridisciplinaire de Recherche sur l’Environnement et les Matériaux, UMR 5254, Université de Pau et des Pays de l’Adour, Av. de l’Université, BP 1155, 64 013 Pau Cedex, France.

B Corresponding author. Email: anna.chrostowska@univ-pau.fr

Australian Journal of Chemistry 63(12) 1608-1614 https://doi.org/10.1071/CH10325
Submitted: 2 September 2010  Accepted: 4 October 2010   Published: 6 December 2010

Abstract

Ultraviolet photoelectron spectroscopy (UV-PES) is a well established technique that provides ionization energies of molecules in the gas phase. Flash vacuum thermolysis or vacuum gas-solid reactions coupled with UV-PES are especially suited for the generation and analysis of small amounts of short-lived species in real-time. These experimental data, supported by quantum chemical calculations for the consistency of the assignments of PES spectra, provide fundamental information about electronic structure and bonding that is obtained by no other technique. This paper aims to give some representative original examples chosen from Pau’s research group that illustrate the advantages and wide applicability of these techniques. These examples show the selected data and conclusions which focus on the reactivity of low-coordinated of Main Group IV and V elements. Germylenes and simplest carbon-arsenic multiple bonded species ware successfully characterized using UV photoelectron spectroscopy – a very powerful, direct characterization instrument.


References

[1]  A. D. Baker, D. Betteridge, Photoelectron Spectroscopy and Analytical Aspects 1972 (Pergamon Press: Oxford).
      J. Wayne Rabalais, Principles of UltraViolet Photoelectron Spectroscopy 1977 (John Wiley and Sons: New York, NY).

[2]  D. Gonbeau, S. Lacombe, M.-C. Lasnes, J.-L. Ripoll, G. Pfister-Guillouzo, J. Am. Chem. Soc. 1988, 110, 2730.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  J.-L. Ripoll, Main Group Chem. News 1994, 2, 28.

[4]  FVT techniques, see: E. Hedaya, Acc. Chem. Res. 1969, 2, 367. 10.1021/AR50024A003
      (b) L. Carlsen, H. Egsgaard, Thermochim. Acta 1980, 38, 47.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  B. Pellerin, J.-M. Denis, J. Perrocheau, R. Carrie, Tetrahedron Lett. 1986, 27, 5723.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  B. Pellerin, P. Guenot, J.-M. Denis, Tetrahedron Lett. 1987, 28, 5811.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) J.-C. Guillemin, J.-M. Denis, Synthesis 1985, 1131.
         | Crossref | GoogleScholarGoogle Scholar |
      For a review on the VGSR techniques, see: J.-M. Denis, A.-C. Gaumont, Gas-Phase Reactions in Organic Synthesis 1997, pp. 195–235 (Gordon & Breach Science: Amsterdam).

[8]  V. Lemierre, A. Chrostowska, A. Dargelos, H. Chermette, J. Phys. Chem. A 2005, 109, 8348 and references cited therein. 10.1021/JP050254C

[9]  W. Koch, M. C. Holthausen, A Chemist’s Guide to Density Functional Theory 2000 (Wiley-WCH: Weinheim).
      R. G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules 1989 (Oxford University Press: New York, NY).
      M. J. Frish, G. W. Trucks, J. R. Cheeseman, Systematic Model Chemistries Based on Density Functional Theory: Comparison with Traditional Models and with Experiment, in Recent Development and Applications of Modern Density Functional Theory, Theoretical and Computational Chemistry 1996, Vol. 4, pp. 679–707 (Ed. J. M. Seminario) (Elsevier Science B. V.: Amsterdam).

[10]  (a) R. E. Stratmann, G. E. Scuseria, M. J. Frisch, J. Chem. Phys. 1998, 109, 8218.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, J. Chem. Phys. 1998, 108, 4439.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) W. von Niessen, J. Schirmer, L. S. Cederbaum, Comput. Phys. Rep. 1984, 1, 57.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) J. V. Ortiz, J. Chem. Phys. 1988, 89, 6348.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  K. Andersson, M. Barysz, A. Bernhardsson, M. R. A. Blomberg, D. L. Cooper, T. Fleig, M. P. Fuelscher, C. de Graaf, B. A. Hess, G. Karlstroem, R. Lindh, P. A. A. Malmqvist, P. Neogrady, J. Olsen, B. O. Roos, A. J. Sadlej, M. Schuetz, B. Schimmelpfennig, L. Seijo, L. Serrano-Andres, P. E. M. Siegbahn, J. Staalring, T. Thorsteinsson, V. Veryazov, P. O. Widmark, MOLCAS, version 5 2000 (Lund University: Sweden).

[13]  The so-called ‘corrected’ IE were evaluated applying a uniform shift, x = –IEvexp-εKSHOMO, where εKSHOMO is the B3LYP/6–311G(d,p) Kohn-Sham energy of the highest occupied MO of the molecule in the ground state, and IEvexp is the lowest experimental IEenergy of this species as suggested previously by R. Stowasser, R. Hoffmann, J. Am. Chem. Soc. 1999, 121, 3414. 10.1021/JA9826892

[14]  V. Lemierre, A. Chrostowska, A. Dargelos, P. Baylère, W. J. Leigh, C. R. Harrington, Appl. Organomet. Chem. 2004, 18, 676 and references cited therein. 10.1002/AOC.628

[15]  A. Chrostowska, V. Lemierre, A. Dargelos, P. Baylère, W. J. Leigh, G. Rima, L. Weber, M. Schimmel, J. Organomet. Chem. 2009, 694, 43 and references cited therein. 10.1016/J.JORGANCHEM.2008.09.069

[16]  (a) A. Laporte-Chrostowska, S. Foucat, T. Pigot, V. Lemierre, G. Pfister-Guillouzo, Main Group Met. Chem. 2002, 25, 55.
      (b) A. Chrostowska, V. Lemierre, T. Pigot, G. Pfister-Guillouzo, I. Saur, K. Miqueu, G. Rima, J. Barrau, Main Group Met. Chem. 2002, 25, 469.
      (c) T. Pigot, S. Foucat, G. Pfister-Guillouzo, J. Mol. Struct. 2006, 782, 36.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  P. P. Gaspar, R. West, in The Chemistry of Organic Silicon Compounds 1998, Vol. 2, Ch. 43 (Eds Z. Rappoport, Y. Apeloig) (John Wiley: Chichester).

[18]  S. E. Boganov, M. P. Egorov, V. I. Faustov, O. M. Nefedov, in The Chemistry of Organic Germanium, Tin and Lead Compounds 2002, Vol. 2, Ch. 12 (Ed. Z. Rappoport) (JohnWiley: Chichester).

[19]  W. P. Neumann, Chem. Rev. 1991, 91, 311.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  C. Guimon, G. Pfister-Guillouzo, G. Manuel, P. Mazerolles, J. Organomet. Chem. 1978, 149, 149.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  (a) A. J. Arduengo, III, A. J. Arduengo, III, J. Am. Chem. Soc. 1994, 116, 6641.
      (b) M. Denk, J. C. Green, N. Metzler, M. Wagner, J. Chem. Soc., Dalton Trans. 1994, 2405.
         | Crossref | GoogleScholarGoogle Scholar |
      For reviews of stable heterosubstituted silylenes and germylenes, see: M. Driess, H. Grützmacher, Angew. Chem. Int. Ed. Engl. 1996, 35, 828. 10.1002/ANIE.199608281
      (d) R. West, M. Denk, Pure Appl. Chem. 1996, 68, 785.
         | Crossref | GoogleScholarGoogle Scholar |
      M. Denk, R. West, R. Hayashi, Y. Apeloig, R. Pauncz, M. Karni, N. Auner, J. Weis, in Organosilicon Chemistry II – From Molecules to Materials 1996, p. 251 (Ed. Norbert Auner) (VCH: Weinheim).
      (f) J. Barrau, G. Rima, Coord. Chem. Rev. 1998, 178–180, 593.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) N. Tokitoh, R. Okazaki, Coord. Chem. Rev. 2000, 210, 251.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  (a) A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) J. P. Foster, F. Weinhold, J. Am. Chem. Soc. 1980, 102, 7211.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  A. Chrostowska, A. Dargelos, V. Lemierre, J.-M. Sotiropoulos, P. Guenot, J. C. Guillemin, Angew. Chem. Int. Ed. 2004, 43, 873 and references cited therein. 10.1002/ANIE.200352445

[24]  A. Chrostowska, V. Lemierre, A. Dargelos, J.-M. Sotiropoulos, J.-C. Guillemin, Appl. Organomet. Chem. 2004, 18, 690 and references cited therein. 10.1002/AOC.640

[25]  V. Metail, A. Senio, L. Lassale, J. C. Guillemin, G. Pfister-Guillouzo, Organometallics 1995, 14, 4732 and references cited therein. 10.1021/OM00010A040

[26]  J.-C. Guillemin, A. Chrostowska, A. Dargelos, T. X. M. Nguyen, A. Graciaa, P. Guenot, Chem. Commun. 2008, 4204 and references cited therein. 10.1039/B806771F

[27]  S. Elbel, H. T. Dieck, J. Fluor. Chem. 1982, 19, 349.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  K. Kimura, S. Katsumata, Y. Achiba, T. Yamazaki, S. Iwata, Handbook of HeI Photoelectron Spectra of Fundamental Organic Molecules 1981 (Japan Scientific Societies Press: Tokyo).

[29]  J. B. Peel, G. Willet, J. Chem. Soc., Faraday Trans. 1975, 71, 1799.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  S. Lacombe, D. Gonbeau, J.-L. Cabioch, B. Pellerin, J.-M. Denis, G. Pfister-Guillouzo, J. Am. Chem. Soc. 1988, 110, 6964.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  The first synthesis of hydrogen cyanide, previously called ‘Berlin Blue acid’, is reported in History of cyanide, N. Bunce and J. Hunt. Available online at: http://en.wikipedia.org/wiki/Hydrogen_cyanide [verified October 2010].

[32]  T. E. Gier, J. Am. Chem. Soc. 1961, 83, 1769.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  E. Kurita, H. Matsuura, K. Ohno, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2004, 60, 3013.
         | Crossref | GoogleScholarGoogle Scholar | 15477138PubMed |

[34]  O. Mó, M. Yanez, J.-C. Guillemin, El. H. Riague, J.-F. Gal, P.-C. Maria, C. Poliart, Chemistry 2002, 8, 4919.
         | Crossref | GoogleScholarGoogle Scholar | 12397593PubMed |

[35]  L. L. Lohr, A. C. Scheiner, J. Mol. Struct. Theochem. 1984, 109, 195.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  D. C. Frost, S. T. Lee, C. A. McDowell, Chem. Phys. Lett. 1973, 23, 472.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  W. Thiel, A. Schweig, Chem. Phys. Lett. 1972, 16, 409.
         | Crossref | GoogleScholarGoogle Scholar |