Structure, Stability, and Generation of CH3CNS
Melinda Krebsz A , Balázs Hajgató B , Gábor Bazsó A , György Tarczay A C and Tibor Pasinszki A CA Institute of Chemistry, Eötvös Loránd University Budapest, PO Box 32,H-1518 Budapest 112, Hungary.
B Department of Chemistry, Hasselt University, Research Group of Theoretical Chemistry and Molecular Modelling, Agoralaan, Gebouw D, B-3590 Diepenbeek, Belgium.
C Corresponding authors. Email: pasinszki@chem.elte.hu; tarczay@chem.elte.hu
Australian Journal of Chemistry 63(12) 1686-1693 https://doi.org/10.1071/CH10303
Submitted: 13 August 2010 Accepted: 23 September 2010 Published: 6 December 2010
Abstract
The unstable acetonitrile N-sulfide molecule CH3CNS has been photolytically generated in inert solid argon matrix from 3,4-dimethyl-1,2,5-thiadiazole by 254-nm UV irradiation, and studied by ultraviolet spectroscopy and mid-infrared spectroscopy. The molecule is stable in the matrix to 254-nm UV irradiation, but decomposes to CH3CN and a sulfur atom when broad-band UV irradiation is used. Chemiluminescence due to S2 formation from triplet sulfur atoms was detected on warming the matrix to ∼20–25 K. The ground-state structure and potential uni- and bimolecular reactions of CH3CNS are investigated using B3LYP, CCSD(T), and MR-AQCC quantum-chemical methods. CH3CNS is demonstrated to be stable under isolated conditions at room temperature, i.e. in the dilute gas phase or in an inert solid matrix, but unstable owing to bimolecular reactions, i.e. in the condensed phase.
References
[1] R. M. Paton, Chem. Soc. Rev. 1989, 18, 33.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmtFCit7o%3D&md5=1f163c2872ae4f5551e0788ab0c6dce0CAS |
[2] C. Wentrup, P. Kambouris, Chem. Rev. 1991, 91, 363.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitVKnurs%3D&md5=b875a2369e7d89d22b034857fa64e9a6CAS |
[3] S. Kanemasa, Sci. Synthesis 2004, 19, 17.
[4] M. Krebsz, T. Pasinszki, Curr. Org. Chem. 2010, in press.
[5] T. Pasinszki, M. Krebsz, G. Bazsó, G. Tarczay, Chemistry 2009, 15, 6100.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt12ltL8%3D&md5=19f9f7ebb9beca0c7c820687cd4a3952CAS | 19449362PubMed |
[6] T. Pasinszki, G. Bazsó, M. Krebsz, G. Tarczay, Phys. Chem. Chem. Phys. 2009, 11, 9458.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Kisr7O&md5=1ea67e4b9a702a6ae8a168011d711965CAS | 19830329PubMed |
[7] P. Kambouris, M. Plisnier, R. Flammang, J. K. Terlouw, C. Wentrup, Tetrahedron Lett. 1991, 32, 1487.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktVOqsbk%3D&md5=25d26d120b7648068a46e7ec08183cc8CAS |
[8] N. Harrit, A. Holm, I. R. Dunkin, M. Poliakoff, J. J. Turner, J. Chem. Soc, Perkin Trans. 2 1987, II, 1227.
| Crossref | GoogleScholarGoogle Scholar |
[9] R. Flammang, P. Gerbaux, E. H. Morkved, M. W. Wong, C. Wentrup, J. Phys. Chem. 1996, 100, 17452.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtFKgsbk%3D&md5=7cfdef469ea3d415f64d7df72f021499CAS |
[10] P. Gerbaux, Y. V. Haverbeke, R. Flammang, M. W. Wong, C. Wentrup, J. Phys. Chem. A 1997, 101, 6970.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsVSms7s%3D&md5=e7d19f775dd3b4b53388a8bbedb00afeCAS |
[11] Z. Fu, X. Pan, Z. Li, C. Sun, R. Wang, Chem. Phys. Lett. 2006, 430, 13.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVWrsrfI&md5=4034fc1cb413de01755b159c0f3eaa4aCAS |
[12] T. Pasinszki, T. Kárpáti, N. P. C. Westwood, J. Phys. Chem. A 2001, 105, 6258.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktVClsLk%3D&md5=c0093d198b7d8ad480cec02dfc93b789CAS |
[13] T. J. Lee, P. R. Taylor, Int. J. Quant. Chem. Symp. 1989, 23, 199.
| 1:CAS:528:DyaK3cXhtVGjsLo%3D&md5=df42bcb5ae7740f6a873de48d28d795cCAS |
[14] Zh.-X. Yu, P. Caramella, K. N. Houk, J. Am. Chem. Soc. 2003, 125, 15420.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1aktLs%3D&md5=388409592c62cf87cefb24a95264fecdCAS | 14664587PubMed |
[15] E. Goldstein, B. Beno, K. N. Houk, J. Am. Chem. Soc. 1996, 118, 6036.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjtlygu70%3D&md5=0929a0970739c681219fb193a538a90eCAS |
[16] J. Gräfenstein, A. M. Hjerpe, E. Kraka, D. Cremer, J. Phys. Chem. A 2000, 104, 1748.
| Crossref | GoogleScholarGoogle Scholar |
[17] G. Orlova, J. D. Goddard, J. Chem. Phys. 2000, 112, 10085.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvVOlu7g%3D&md5=9df38799372c55790eab2adc4a50775fCAS |
[18] T. Pasinszki, B. Hajgató, B. Havasi, N. P. C. Westwood, Phys. Chem. Chem. Phys. 2009, 11, 5263.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXns1Srsb4%3D&md5=b4ed1c36ff562585904580dbb5c605a9CAS | 19551193PubMed |
[19] H. S. Kim, K. Kim, Bull. Korean Chem. Soc. 1992, 13, 520.
| 1:CAS:528:DyaK3sXkvVWlug%3D%3D&md5=22569de43e4256458f0ab2d5298c9e15CAS |
[20] G. Herzberg, Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules 1966 (van Nostrand Reinhold: New York, NY).
[21] NIST Atomic Spectra Database Lines Form. Available online at: http://physics.nist.gov/cgi-bin/Elements/ASD_lines.pl?el=S [verified October 2010].
[22] B. E. Wurfel, G. C. Pimentel, Chem. Phys. Lett. 1994, 223, 301.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkvFCqtbk%3D&md5=c1ea4d5d126e941e2af379921ad4ede8CAS |
[23] L. M. Weinstock, P. Davies, B. Handelsman, R. Tull, J. Org. Chem. 1967, 32, 2823.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXkvFSksb4%3D&md5=fa16ce6f1697109a44837f21164cff7aCAS |
[24] ACES II: Mainz-Austin-Budapest version: J. F. Stanton, J. Gauss, J. D. Watts, P. G. Szalay, R. J. Bartlett with contributions from A. A. Auer, D. E. Bernholdt, O. Christiansen, M. E. Harding, M. Heckert, O. Heun, C. Huber, D. Jonsson, J. Jusélius, W. J. Lauderdale, T. Metzroth, C. Michauk, D. R. Price, K. Ruud, F. Schiffmann, A. Tajti, M. E. Varner, J. Vázquez and the integral packages: MOLECULE (J. Almlöf and P. R. Taylor), PROPS (P. R. Taylor), and
[25] J. F. Stanton, J. Gauss, J. D. Watts, W. J. Lauderdale, R. J. Bartlett, Int. J. Quantum Chem., Quantum Chem. Symp. 1992, 26, 897.
[26] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision C.02 2004 (Gaussian, Inc.: Wallingford, CT).
[27] MOLPRO 2010.1: MOLPRO is a package of ab initio programs written by H.-J. Werner, P. J. Knowles, F. R. Manby, M. Schütz, P. Celani, G. Knizia, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklaß, P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, A. Wolf, see: http://www.molpro.net [verified October 2010]; Integral evaluation (SEWARD) R. Lindh, U. Ryu, B. Liu, J. Chem. Phys. 1991, 95, 5889; Coupled-Cluster treatments: C. Hampel, K. Peterson, H.-J. Werner, Chem. Phys. Lett. 1992, 190, 1 and references therein. The program to compute the perturbative triples corrections has been developed by M. J. O. Deegan, P. J. Knowles, Chem. Phys. Lett. 1994, 227, 321.
[28] H. H. Nielsen, Rev. Mod. Phys. 1951, 23, 90.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG38XksVarsg%3D%3D&md5=24d117c7d64427d9b3a6a452aec6d1beCAS |
[29] W. D. Allen, Y. Yamaguchi, A. G. Császár, D. A. Clabo, R. B. Remington, H. F. Schaefer, Chem. Phys. 1990, 145, 427.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlvVSgtL0%3D&md5=bed3cf8aed71a2c51f4c447f933a9830CAS |
[30] C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhsVahtbk%3D&md5=8bd311ce2eacb9dbfe115b5854f56365CAS |
[31] C. Gonzalez, H. B. Schlegel, J. Phys. Chem. 1990, 94, 5523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktl2rt78%3D&md5=2333fad22d7b5b7adaa1e89e670999c9CAS |
[32] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=40ddd73c5b77fe121328f03f37477ad4CAS |
[33] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=a3228eda705bb73aef24b0e519b22e59CAS |
[34] K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, Chem. Phys. Lett. 1989, 157, 479.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlsVSkt7s%3D&md5=e15e3085d65977e8a8e69e50f92a5818CAS |
[35] P. G. Szalay, R. J. Bartlett, Chem. Phys. Lett. 1993, 214, 481.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmsl2ju7o%3D&md5=121b29015c36c7ea583b74840ff37ef7CAS |