On the Superhydrophobic Properties of Crystallized Stearic Acid*
Kyle R. Joseph A and Chiara Neto A BA School of Chemistry, The University of Sydney, NSW 2006, Australia.
B Corresponding author. Email: c.neto@chem.usyd.edu.au
Australian Journal of Chemistry 63(3) 525-528 https://doi.org/10.1071/CH09292
Submitted: 15 May 2009 Accepted: 2 October 2009 Published: 26 March 2010
Abstract
A surface coating formed by stearic acid (SA) crystals was prepared by repeatedly dipping a silicon substrate into a SA solution and drying it in air. Scanning electron microscopy imaging revealed that the surface roughness of the coating increases with each dip-and-dry cycle. The coating appears as a carpet of hydrophobic ‘blades’, and is superhydrophobic (after 20 dipping cycles advancing contact angle ~160°), even after immersion in water for up to 2 h. This simple method could be applied to large areas, making this an interesting alternative to high-tech surface modification techniques.
[1]
G. M. Whitesides,
A. D. Stroock,
Phys. Today 2001, 54, 42.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
|
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
| Crossref | GoogleScholarGoogle Scholar |
CAS |
* This paper is based on work presented at the Australian Colloid and Interface Symposium, Adelaide, February 2009.