Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Spherical Glycopolymer Architectures using RAFT: From Stars with a β-Cyclodextrin Core to Thermoresponsive Core–Shell Particles

Ling Zhang A B C and Martina H. Stenzel A D
+ Author Affiliations
- Author Affiliations

A Centre for Advanced Macromolecular Design, School of Chemical Sciences and Engineering, University of New South Wales, Sydney, NSW 2052, Australia.

B Cooperative Research Centre (CRC) for Polymers, Notting Hill, Vic 3168, Australia.

C Current address: Tianjin University, 223/Building 9, Nankai District, Tianjin, 300072, China.

D Corresponding author. Email: M.Stenzel@unsw.edu.au

Australian Journal of Chemistry 62(8) 813-822 https://doi.org/10.1071/CH09108
Submitted: 23 February 2009  Accepted: 18 March 2009   Published: 13 August 2009

Abstract

Glycopolymers with a seven-arm star architectures based on a β-cyclodextrin core (β-CD-RAFT) were successfully prepared using reversible addition–fragmentation chain transfer (RAFT) polymerization. A bimodal molecular weight distribution was observed in the early stages of the polymerization. At monomer conversions of N-acryloyl glucose (AGA) above 10% the polymerization proceeded according to a living behaviour and molecular weights of more than 200000 g mol–1 were obtained. However, the resulting star polymers did not undergo well-controlled chain extension with N-isopropyl acrylamide (NIPAAm) and the formation of block structures in each arm was prevented. Alternatively, the arm-first technique was employed. Block copolymers based on AGA and PNIPAAm were self-assembled into micelles at a solution temperature above the lower critical solution temperature. Subsequent core-crosslinking with hexan-1,6-diol diacrylate resulted in unimolecular micelles with thermoresponsive properties. Dynamic light scattering studies, surface tensiometry, and transmission electron microscopy confirmed the formation of core–shell particles.


References


[1]   R. Duncan, I. C. Hume, P. Kopeckova, K. Ulbrich, J. Strihalm, J. Kopecek, J. Controlled Release 1989, 10,  51.
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        |  CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        |  CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        |  CAS |  open url image1