Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Use of a 9,10-Dihydrofulvalene Pincer Cycloadduct as a Cornerstone for Molecular Architecture

Mirta Golić A B , Martin R. Johnston A C G , Davor Margetić A D , Austin C. Schultz A E and Ronald N. Warrener A F
+ Author Affiliations
- Author Affiliations

A Centre for Molecular Architecture, Central Queensland University, Rockhampton QLD 4700, Australia.

B Innovation and Technical Centre, Peanut Company of Australia, PO Box 26, Kingaroy QLD 4610, Australia.

C School of Chemistry, Physics and Earth Sciences, Flinders University, Adelaide SA 5042, Australia.

D Laboratory for Physical Organic Chemistry, Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia.

E Sugar Research Institute, Mackay QLD 4740, Australia.

F Molecular Architecture Section, Intelligent Polymer Research Institute, University of Wollongong, Wollongong NSW 2522, Australia.

G Corresponding author. Email: martin.johnston@flinders.edu.au

Australian Journal of Chemistry 59(12) 899-914 https://doi.org/10.1071/CH06286
Submitted: 11 August 2006  Accepted: 13 October 2006   Published: 20 December 2006

Abstract

Dimethyl-3,3a,3b,4,6a,7a-hexahydro-3,4,7-metheno-7H-cyclopenta[a]pentalene-7,8-dicarboxylate (3, a 9,10-dihydrofulvalene pincer cycloadduct) was found to be a versatile building block for the synthesis of polynorbornyl scaffolds containing various end functionalities such as porphyrins, pyrimidine, and the phenanthroline ligand in the free and complexed forms. The block is stable under various cycloaddition reaction conditions and has high π-bond reactivity. Molecular modelling using a semi-empirical based method (AM1) shows that incorporation of this diene block into polynorbornyl systems has an important influence on their overall architecture. In particular, incorporation of the block results in a straightening of the curvature normally observed in polynorbornyl molecules to form almost ideally linear polycyclic rigid spacers.


Acknowledgements

The authors are grateful for funding support from the Australian Research Council. M.R.J. thanks Central Queensland University for a Research Advancement Award.


References


[1]   J. L. Atwood, J.-M. Lehn, Comprehensive Supramolecular Chemistry 1996 (Pergamon: New York, NY).

[2]   F. Vögtle, F. Alfter, Supramolecular Chemistry: An Introduction 1991 (Wiley: Chichester).

[3]   R. N. Warrener, Chem. in Aust. 1991, 58,  578.
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |   in press.
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  open url image1
         (b) J. J. P. Stewart, in Reviews in Computational Chemistry (Eds K. B. Lipkowitz, D. B. Boyd) 1991, Vol. 2, pp. 45–118 (VCH: Weinheim).

[41]   Two attempts were made to repeat this reaction using larger amount of diene, but much more polymeric material was isolated. High pressure experiments at 14 kbar in DCM at 70°C gave much less polymeric material.