A Step Towards a [2.2]Paracyclophane: A Single Crystal to Single Crystal Reaction Involving a Hydrogen-Bonded Molecular Assembly with Multiple Reaction Centres
Tomislav Friščić A and Leonard R. MacGillivray A BA Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, USA.
B Corresponding author. Email: len-macgillivray@uiowa.edu
Australian Journal of Chemistry 59(9) 613-616 https://doi.org/10.1071/CH06244
Submitted: 14 July 2006 Accepted: 11 September 2006 Published: 19 October 2006
Abstract
A single crystal to single crystal [2+2] photodimerization has been achieved within a molecular cocrystal composed of finite, hydrogen-bonded molecular assemblies using the absorption-edge irradiation technique. The cocrystal is composed of a resorcinol template and a diolefin reactant that reacts to form a non-symmetrical cyclobutane product. The product is an intermediate in a two-step solid-state synthesis of a [2.2]paracyclophane. The ability to conduct the reaction in a single crystal to single crystal fashion attests to the robustness of the hydrogen-bonded assemblies during the course of the solid-state transformation.
[1]
(a) J. D. Wuest,
Chem. Commun. 2005, 5830.
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
A The role of shape in template-controlled solid-state synthesis will be extensively discussed in a subsequent paper.
B The average N···O hydrogen bond distance in 2(3)·2(2) is 2.77 Å, whereas in case of 2(3)·1b it is 2.76 Å.