Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

Speciation and Bioavailability of Trace Metals in Water: Progress Since 1982

Graeme E. Batley A B , Simon C. Apte A and Jennifer L. Stauber A
+ Author Affiliations
- Author Affiliations

A Centre for Environmental Contaminants Research, CSIRO Energy Technology, Bangor NSW 2234, Australia.

B Author to whom correspondence should be addressed (e-mail: graeme.batley@csiro.au).




Graeme Batley is Chief Research Scientist and Director of the Centre for Environmental Contaminants Research, CSIRO Energy Technology, Sydney. He has B.Sc.(Hons1), M.Sc., Ph.D., and D.Sc. degrees from the University of New South Wales. He is well known for his research on the analytical and environmental chemistry of contaminants in natural waters and sediments, in particular on metal speciation and bioavailability, and has authored over 270 research publications. He was a recipient of both Environment and Analytical Medals of the RACI and of the CSIRO Chairman’s Medal.



Simon Apte is a Senior Principal Research Scientist and leader of the Water Quality Group at the Centre for Environmental Contaminants Research. His research interests include ultratrace metals analysis, trace metal speciation in natural waters, bacterial processes involving trace metals, and the environmental impacts of mining. He obtained a Ph.D. in marine analytical chemistry from the University of Southampton (UK) in 1985 and worked at the Water Research Centre (Medmenham, UK) for five years before joining CSIRO in 1991.



Jenny Stauber is a Senior Principal Research Scientist and leader of the Aquatic Ecotoxicology Group at the Centre for Environmental Contaminants Research. She has over 20 years’ research experience in aquatic ecotoxicology, in particular in the development and application of toxicity tests. Her research interests include the mode of action of metals on microlagae, toxicant bioavailability, applications of flow cytometry in ecotoxicology, and risk assessment. She currently serves on expert committees for Environment Australia, theWorld Health Organisation, and the Great Barrier Reef Marine Park Authority.

Australian Journal of Chemistry 57(10) 903-919 https://doi.org/10.1071/CH04095
Submitted: 20 April 2004  Accepted: 22 July 2004   Published: 1 October 2004

Abstract

The advances in studies of trace metal speciation and bioavailability since Mark Florence’s 1982 review of the topic, published in Talanta, have been comprehensively reviewed. While the relative merits of kinetic and equilibrium approaches are still being determined, advances in the applications of stripping voltammetry, including the application of microelectrodes and an appreciation of detection windows in both CSV and ASV, have been matched by the introduction of new dynamic techniques including diffusive gradients in thin films (DGTs), permeation liquid membranes (PLMs), and improved applications of chelating resins. There have also been improvements in equilibrium techniques such as ion-selective electrodes and Donnan dialysis. The ability of geochemical speciation models to predict metal complexation by natural organic matter has greatly improved, yet the models still require validation against field measurements.

More reliable and relevant bioassays have been developed using sensitive species such as algae and bacteria, and improved protocols are eliminating uncertainties particularly due to problems with high cell densities, and are allowing more useful comparisons with chemically estimated bioavailability. While the free-ion activity model has provided an improved interpretation of the relative toxicities observed with different metal species, its extension to the biotic ligand model is leading to better predictions of acute effects at least on higher organisms. The extension of such approaches to studies of chronic effects at ‘natural’ concentrations using unicellular organisms remains a challenge, as does the evaluation of whether such approaches are simplified limiting cases of a more dynamic natural situation where chemical reactivity and rates of metal transport could be important.


References


[1]   D. M. Templeton, F. Ariese, R. Cornelius, L.-G. Danielsson, H. Muntau, H. P. van Leeuwen, R. Łobinski, Pure Appl. Chem. 2000, 72,  1543.
         
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
         
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
         
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  open url image1