10.1071/CH11227\_AC CSIRO 2011 Australian Journal of Chemistry 2011, 64(8), 1133-1140 Cpd2Revi sed data\_publication\_text \_publ\_contact\_author\_name \_publ\_contact\_author\_address 'Marcus L. Cole' School of Chemistry University of New South Wales Sydney NŠW 2052 Australia \_publ\_contact\_author\_email \_publ\_contact\_author\_phone \_publ\_contact\_author\_fax m. col e@unsw. edu. au ' +61 (0)2 93854678' ' +61 (0)2 93856141' \_audit\_creation\_method SHELXL-97 \_chemical\_name\_systematic \_chemi cal \_name\_common '[Mo(CO)5(IBuMe)]' 'Č13`H14 Ňo N2 Ò5' \_chemical\_formula\_moiety \_chemi cal \_formul a\_sum 'C13 H14 Mo N2 O5' \_chemi cal \_compound\_source \_chemi cal \_properti es\_physi cal n-pentane oxygen-sensi ti ve \_chemi cal \_mel ti ng\_point 347 \_exptl \_crystal \_description \_exptl \_crystal \_colour prism pale yellow' \_diffrn\_ambient\_temperature 150(2)\_chemi cal \_formul a\_wei ght 374.20 loop\_ \_atom\_type\_symbol \_atom\_type\_description \_atom\_type\_scat\_di spersi on\_real \_atom\_type\_scat\_di spersi on\_i mag \_atom\_type\_scat\_source C C 0.0033 0.0016 'International H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 0 0 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Mo Mo -1.6832 0.6857 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' \_symmetry\_cell\_setting \_symmetry\_space\_group\_name\_H-M \_symmetry\_int\_tables\_number monocl i ni c 'P 21/n' 14 \_chemi cal \_absol ute\_confi gurati on ? l oop\_ \_symmetry\_equiv\_pos\_as\_xyz '-x, -y, -z' 'x-1/2, -y-1/2, z-1/2' 8.7946(19) 16.159(4) 10.737(3) \_cell\_length\_a \_cell\_length\_b \_cell\_length\_c \_cell\_angle\_alpha 90.00 \_cell\_angle\_beta 90.248(12) \_cell\_angle\_gamma \_cell\_volume \_cell\_formula\_units\_Z 90.00 1526.0(6) 4 \_cell\_measurement\_temperature 150(2)? ? \_cell\_measurement\_reflns\_used \_cell\_measurement\_theta\_min \_cell\_measurement\_theta\_max ? \_exptl\_crystal\_size\_max 0.10 \_exptl\_crystal\_size\_mid 0.05 \_exptl\_crystal\_size\_min 0.05 Page 1

Cpd2Revi sed \_exptl\_crystal\_density\_meas \_exptl\_crystal\_density\_diffrn \_exptl\_crystal\_density\_method \_exptl\_crystal\_F\_000 ? 1.629 not measured 752 \_exptl\_absorpt\_coefficient\_mu 0.881 \_exptl\_absorpt\_correction\_type empirical 0.9169 \_exptl\_absorpt\_correction\_T\_min
\_exptl\_absorpt\_correction\_T\_max 0.9572 \_exptl\_absorpt\_process\_details SADABS \_exptl\_special\_details ; ? \_diffrn\_radiation\_probe x-ray \_diffrn\_radiation\_type MoK\a \_diffrn\_radiation\_wavelength 0.71073 \_diffrn\_source fine-focus sealed tube' graphi te \_diffrn\_radiation\_monochromator \_diffrn\_measurement\_device\_type \_diffrn\_measurement\_method Bruker X8 Apex' psi and omega scans' \_diffrn\_detector\_area\_resol\_mean \_diffrn\_standards\_number \_diffrn\_standards\_interval\_count \_diffrn\_standards\_interval\_time ? ? diffrn\_standards\_decay\_% ? \_diffrn\_reflns\_number 9337 \_diffrn\_reflns\_av\_R\_equivalents 0.1343 \_diffrn\_reflns\_av\_sigmal/netl 0.2907 \_diffrn\_reflns\_limit\_h\_min -9 \_diffrn\_reflns\_limit\_h\_max 12 \_diffrn\_reflns\_limit\_k\_min -22 17 -15 14 \_diffrn\_reflns\_theta\_min 2.64 \_diffrn\_refl ns\_theta\_max \_refl ns\_number\_total \_refl ns\_number\_gt 30.64 4404 1675 \_refl ns\_threshol d\_expressi on >2sigma(I) 'Bruker AXS Collect Software' 'Bruker Scalepack' \_computing\_data\_collection \_computing\_cell\_refinement \_computing\_data\_reduction X-Seed' SHELXS-97 (Sheldrick, 1990)' SHELXL-97 (Sheldrick, 1997)' \_computing\_structure\_solution \_computi ng\_structure\_refi nement \_computi ng\_mol ecul ar\_graphi cs \_computi ng\_publ i cati on\_materi al ÷ X-Seed / POV-Ray 'Microsoft Office 2010' \_refine\_special\_details Refinement of F^2<sup>^</sup> against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2$  > 2sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger. \_refine\_ls\_structure\_factor\_coef Fsqd \_refine\_ls\_matrix\_type ful l \_refine\_ls\_weighting\_scheme cal c \_refine\_ls\_weighting\_details 'calc w=1/[\s^2^(Fo^2^)+(0.0770P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' \_atom\_sites\_solution\_primary di rect di fmap \_atom\_sites\_solution\_secondary \_atom\_sites\_solution\_hydrogens geom \_refi ne\_l s\_hydrogen\_treatment constr Page 2

Cpd2Revi sed \_refine\_ls\_extinction\_method none \_refine\_ls\_extinction\_coef 4404 \_refine\_ls\_number\_reflns \_refine\_ls\_number\_parameters 230 \_refine\_ls\_number\_restraints 36 \_refine\_ls\_R\_factor\_all \_refine\_ls\_R\_factor\_gt \_refine\_ls\_wR\_factor\_gt \_refine\_ls\_wR\_factor\_gt 0.2409 0.0915 0.2206 0.1689 \_refi ne\_l s\_goodness\_of\_fi t\_ref \_refi ne\_l s\_restrai ned\_S\_al l \_refi ne\_l s\_shi ft/su\_max \_refi ne\_l s\_shi ft/su\_mean 0.929 0.926 0.000 0.000 loop\_ \_atom\_site\_label \_atom\_site\_type\_symbol \_atom\_site\_fract\_x \_atom\_site\_fract\_y \_atom\_site\_fract\_ź \_atom\_site\_U\_iso\_or\_equiv \_atom\_site\_adp\_type \_atom\_site\_occupancy \_atom\_site\_symmetry\_multiplicity \_atom\_site\_calc\_flag \_atom\_site\_refinement\_flags \_atom\_site\_disorder\_assembly \_atom\_site\_disorder\_group Mo1 Mo 0.75710(11) 0.03612(5) 0.83203(8) 0.0273(3) Uani 1 1 d . . . 01 0 1.0267(11) 0.1597(5) 0.9004(8) 0.060(2) Uani 1 1 d . 02 0 0.4932(10) 0.1635(5) 0.8961(8) 0.059(2) Uani 1 1 d . U2 U U. 4932(10) U. 1635(5) U. 8961(8) U. 059(2) Uani 1 1 d . . . O3 O U. 5076(11) -0. 1033(6) U. 7820(11) U. 084(3) Uani 1 1 d . . . O4 O U. 9939(9) -0. 1105(5) U. 8049(9) U. 062(3) Uani 1 1 d . . . O5 O U. 7466(10) -0. 0106(5) 1. 1171(7) U. 054(2) Uani 1 1 d . . . N1 N U. 7630(13) U. 1556(5) U. 5814(8) U. 050(3) Uani 1 1 d . . . N2 N U. 7891(8) U. 0307(5) U. 5177(7) U. 0292(19) Uani 1 1 d U . . C1 C U. 7678(14) U. 0773(6) U. 6283(9) U. 039(3) Uani 1 1 d . . . H2 H U. 7710 U. 2062 U. 4059 U. 085 Ui so 1 1 cal c R A . C3 C U. 7720(18) U. 0783(8) U. 4178(10) U. 067(4) Uani 1 1 d . . . C3 C 0.7720(18) 0.0783(8) 0.4178(10) 0.067(4) Uani 1 1 d . A . H3 H 0.7634 0.0598 0.3341 0.081 Uiso 1 1 calc R . C4 C 0.7703(18) 0.2330(6) 0.6560(10) 0.062(4) Uani 1 1 d . . . H4A H 0.8669 0.2350 0.7017 0.093 Uiso 1 1 calc R A . H4B H 0.6857 0.2341 0.7152 0.093 Uiso 1 1 calc R H4C H 0.7630 0.2809 0.6003 0.093 Uiso 1 1 calc R H4C H 0. 7630 0. 2809 0. 6003 0. 093 Ui so 1 1 cal c R . . C9 C 0. 9289(14) 0. 1170(7) 0. 8762(9) 0. 041(3) Uani 1 1 d . . . C10 C 0. 5863(14) 0. 1199(7) 0. 8688(10) 0. 040(3) Uani 1 1 d . . . C11 C 0. 5899(13) -0. 0521(7) 0. 8015(10) 0. 040(3) Uani 1 1 d . . . C12 C 0. 9084(14) -0. 0550(7) 0. 8097(11) 0. 049(3) Uani 1 1 d . . . C13 C 0. 7483(11) 0. 0041(6) 1. 0121(10) 0. 036(2) Uani 1 1 d . . . C5A C 0. 782(2) -0. 0623(10) 0. 5131(16) 0. 029(4) Uani 0. 679(17) 1 d P A 1 H5A1 H 0. 8729 -0. 0829 0. 4684 0. 035 Ui so 0. 679(17) 1 cal c PR A 1 H5A2 H 0. 7875 -0. 0839 0. 5993 0. 035 Ui so 0. 679(17) 1 cal c PR A 1 H5A2 H 0. 7875 -0. 0839 0. 5993 0. 035 Ui so 0. 679(17) 1 cal c PR A 1 C6A C 0. 6474(18) -0. 0955(9) 0. 4532(14) 0. 037(4) Uani 0. 679(17) 1 d P A 1 H6A1 H 0. 6413 -0. 0747 0. 3666 0. 044 Ui so 0. 679(17) 1 cal c PR A 1 H6A2 H 0. 5560 -0. 0762 0. 4981 0. 044 Ui so 0. 679(17) 1 cal c PR A 1 C7A C 0. 6500(18) -0. 1909(9) 0. 4518(16) 0. 038(4) Úani 0. 679(17) 1 d P A 1 H7A1 H 0. 5511 -0. 2119 0. 4209 0. 046 Ui so 0. 679(17) 1 cal c PR A 1 H7A2 H 0. 6652 -0. 2117 0. 5377 0. 046 Ui so 0. 679(17) 1 cal c PR A 1 C8A C 0. 779(3) -0. 2233(14) 0. 367(2) 0. 057(6) Uani 0. 679(17) 1 d PU A 1 H8A1 H 0. 7666 -0. 2010 0. 2830 0. 086 Ui so 0. 679(17) 1 cal c PR A 1 H8A2 H 0.7758 -0.2839 0.3642 0.086 Uiso 0.679(17) 1 calc PR A 1 H8A3 H 0.8779 -0.2056 0.4011 0.086 Uiso 0.679(17) 1 calc PR A 1 C5B C 0.711(4) -0.0605(19) 0.518(3) 0.014(7) Uani 0.321(17) 1 d PU A 2 H5B1 H 0.6931 -0.0824 0.6031 0.017 Ui so 0.321(17) 1 calc PR A 2 H5B2 H 0.6173 -0.0639 0.4672 0.017 Ui so 0.321(17) 1 calc PR A 2 C6B C 0. 846(4) -0. 097(2) 0. 457(4) 0. 042(9) Uani 0. 321(17) 1 d PU A 2 H6B1 H 0. 9388 -0. 0774 0. 5002 0. 051 Ui so 0. 321(17) 1 cal c PR A 2

## Cpd2Revi sed

H6B2 H 0. 8503 -0. 0770 0. 3700 0. 051 Ui so 0. 321(17) 1 cal c PR A 2 C7B C 0. 847(4) -0. 194(2) 0. 456(3) 0. 037(9) Uani 0. 321(17) 1 d PU A 2 H7B1 H 0. 9432 -0. 2130 0. 4170 0. 045 Ui so 0. 321(17) 1 cal c PR A 2 H7B2 H 0. 8457 -0. 2142 0. 5424 0. 045 Ui so 0. 321(17) 1 cal c PR A 2 C8B C 0.713(4) -0.231(2) 0.384(3) 0.024(8) Uani 0.321(17) 1 d PU A 2 H8B1 H 0.6817 -0.2826 0.4246 0.036 Ui so 0.321(17) 1 cal c PR A 2 H8B2 H 0.7432 -0.2423 0.2983 0.036 Ui so 0.321(17) 1 cal c PR A 2 H8B3 H 0.6280 -0.1917 0.3846 0.036 Ui so 0.321(17) 1 cal c PR A 2 1000 \_atom\_site\_aniso\_label \_atom\_site\_aniso\_U\_11 \_atom\_site\_aniso\_U\_22 \_atom\_site\_aniso\_U\_33 \_atom\_si te\_ani so\_U\_23 \_atom\_si te\_ani so\_U\_13 \_atom\_si te\_ani so\_U\_12  $\overline{M}$ o1 0.0430(5) 0.0234(4) 0.0156(4) -0.0013(5) -0.0020(3) -0.0010(5)  $\begin{array}{c} 01 & 0. & 0430(3) & 0. & 0234(4) & 0. & 0130(4) & -0. & 0013(3) & -0. & 0020(3) & -0. \\ 01 & 0. & 086(7) & 0. & 036(4) & 0. & 058(6) & -0. & 0013(5) & -0. & 0025(5) \\ 02 & 0. & 068(6) & 0. & 048(5) & 0. & 060(6) & -0. & 015(5) & -0. & 001(5) & 0. & 015(5) \\ 03 & 0. & 060(6) & 0. & 042(5) & 0. & 148(10) & -0. & 041(6) & -0. & 018(6) & 0. & 002(5) \\ 04 & 0. & 043(5) & 0. & 047(5) & 0. & 096(7) & -0. & 038(5) & -0. & 005(5) & 0. & 007(4) \\ 05 & 0. & 078(6) & 0. & 060(5) & 0. & 025(4) & 0. & 011(4) & 0. & 029(4) & 0. & 042(5) \\ 04 & 0. & 043(5) & 0. & 060(5) & 0. & 025(4) & 0. & 011(4) & 0. & 029(4) & 0. & 042(5) \\ 04 & 0. & 043(5) & 0. & 023(4) & 0. & 014(4) & 0. & 000(5) & 0. & 023(4) \\ 05 & 0. & 078(6) & 0. & 023(4) & 0. & 014(4) & 0. & 000(5) \\ 04 & 0. & 042(5) & 0. & 042(5) \\ 04 & 0. & 042(5) & 0. & 042(5) \\ 04 & 0. & 042(5) & 0. & 042(5) \\ 04 & 0. & 042(5) & 0. & 042(5) \\ 04 & 04 & 042(5) & 0. & 042(5) \\ 04 & 04 & 042(5) & 0. & 042(5) \\ 04 & 04 & 042(5) & 0. & 042(5) \\ 04 & 04 & 042(5) & 0. & 042(5) \\ 04 & 04 & 042(5) & 0. & 042(5) \\ 04 & 04 & 042(5) & 0. & 042(5) \\ 04 & 04 & 04 & 042(5) \\ 04 & 04 & 04 & 042(5) \\ 04 & 04 & 04 & 04 & 042(5) \\ 04 & 04 & 04 & 04 & 04 \\ 05 & 04 & 04 & 04 & 04 & 04 \\ 05 & 04 & 04 & 04 & 04 & 04 \\ 05 & 04 & 04 & 04 & 04 & 04 \\ 05 & 04 & 04 & 04 & 04 & 04 \\ 05 & 04 & 04 & 04 & 04 & 04 \\ 05 & 04 & 04 & 04 & 04 & 04 \\ 05 & 04 & 04 & 04 & 04 & 04 \\ 05 & 04 & 04 & 04 & 04 & 04 \\ 05 & 04 & 04 & 04 & 04 & 04 \\ 05 & 04 & 04 & 04 & 04 & 04 \\ 05 & 04 & 04 & 04 & 04 & 04 \\ 05 & 04 & 04 & 04 & 04 & 04 \\ 05 & 04 & 04 & 04 & 04 & 04 \\ 05 & 04 & 04 & 04 & 04 & 04 \\ 05 & 04 & 04 & 04 & 04 & 04 \\ 05 & 04 & 04 & 04 & 04 & 04 \\ 05 & 04 & 04 & 04 & 04 & 04 \\ 05 & 04 & 04 & 04 & 04 & 04 \\ 05 & 04 & 04 & 04 & 04 & 04 \\ 05 & 04 & 04 & 04 & 04 & 04 \\ 05 & 04 & 04 & 04 & 04 & 04 \\ 05 & 04 & 04 & 04 & 04 & 04 \\ 05 & 04 & 04 & 04 & 04 & 04 \\ 05 & 04 & 04 & 04 & 04 & 04 \\ 05 & 04 & 04 & 04 & 04 & 04 \\ 05 & 04 & 04 & 04 & 04 & 04 \\ 05 & 04 & 04 & 04 & 04 & 04 \\ 05 & 04 & 04 & 04 & 04 & 04 \\ 05 & 04 & 04$ N1 0. 110(9) 0. 022(4) 0. 018(5) 0. 004(4) 0. 000(5) -0.003(5)N2 0. 025(4) 0. 023(4) 0. 039(4) -0.003(4) -0.021(3) 0. 010(4) C1 0. 078(9) 0. 026(5) 0. 014(5) -0.002(4) 0. 001(5) -0.006(6)C2 0. 163(16) 0. 038(6) 0. 013(6) 0. 002(5) -0.006(7) 0. 017(9) C3 0. 135(13) 0. 055(8) 0. 011(5) 0. 005(5) -0. 012(7) 0. 022(9) C4 0. 130(13) 0. 023(5) 0. 033(7) -0. 006(5) 0. 000(7) 0. 007(7) C9 0. 071(9) 0. 028(5) 0. 024(6) -0. 004(5) -0. 001(5) -0. 015(6)  $\begin{array}{c} \text{Cy} 0.071(9) & 0.028(5) & 0.024(6) & -0.004(5) & -0.001(5) & -0.015(6) \\ \text{C10} & 0.057(8) & 0.036(6) & 0.026(6) & -0.003(5) & -0.007(5) & 0.006(6) \\ \text{C11} & 0.040(6) & 0.036(6) & 0.045(7) & -0.013(5) & -0.014(5) & 0.016(6) \\ \text{C12} & 0.054(8) & 0.051(7) & 0.043(7) & -0.027(6) & -0.004(6) & -0.021(6) \\ \text{C13} & 0.031(6) & 0.036(5) & 0.039(7) & -0.015(5) & 0.009(5) & -0.012(5) \\ \text{C5A} & 0.023(10) & 0.036(9) & 0.029(9) & -0.006(7) & 0.017(8) & -0.009(8) \\ \text{C6A} & 0.044(10) & 0.029(8) & 0.037(9) & -0.009(7) & -0.019(8) & -0.006(8) \\ \text{C7A} & 0.025(6) & 0.029(8) & 0.057(1) & 0.009(7) & -0.019(8) & -0.006(8) \\ \end{array}$  $\begin{array}{c} \text{C7A} & 0.035(9) & 0.030(8) & 0.050(11) & 0.006(8) & -0.001(8) & -0.004(8) \\ \text{C8A} & 0.050(10) & 0.059(9) & 0.063(10) & -0.011(8) & 0.005(8) & 0.004(8) \\ \text{C5B} & 0.008(10) & 0.019(10) & 0.017(10) & 0.004(8) & -0.002(8) & 0.003(9) \\ \end{array}$ C6B 0. 042(12) 0. 044(12) 0. 040(12) -0. 005(9) -0. 016(9) 0. 000(9) C7B 0. 042(12) 0. 033(11) 0. 037(12) 0. 005(9) 0. 005(9) -0. 002(9) C8B 0. 024(11) 0. 021(10) 0. 027(11) -0. 004(8) 0. 000(9) -0. 008(9)

\_geom\_special\_details

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

l oop\_

\_geom\_bond\_atom\_site\_label\_1 \_geom\_bond\_atom\_site\_label\_2 \_geom\_bond\_distance \_geom\_bond\_site\_symmetry\_2 \_geom\_bond\_publ\_flag Mo1 C12 1.999(14) . ? Mo1 C13 2.003(11) . ? Mo1 C9 2.052(12) . ? Mo1 C10 2.061(12) . ? Mo1 C11 2.073(12) . ? Mo1 C1 2.288(9) . ? O1 C9 1.132(12) . ? O2 C10 1.120(12) . ? O3 C11 1.118(13) . ?

04 C12 1.171(13) 05 C13 1.153(12) N1 C2 1.341(13) ?? • N1 C1 1.363(11) . N1 C4 1.486(12) N2 C3 1.327(12) N2 C1 1.420(12) N2 C5A 1.505(19) N2 C5B 1.63(3) ·???????? C2 C3 1. 356(15) . C5A C6A 1. 45(2) . C6A C7A 1. 54(2) . C7A C8A 1. 55(3) . . · ? ? C5B C6B 1.48(5) . C6B C7B 1.56(5) . ? C7B C8B 1.53(5) loop\_ \_geom\_angle\_atom\_site\_label\_1 \_geom\_angl e\_atom\_si te\_l abel \_ \_geom\_angl e\_atom\_si te\_l abel \_ 3 \_geom\_angl e \_geom\_angle\_site\_symmetry\_1 \_geom\_angl e\_st te\_symmetry\_3 \_geom\_angl e\_si te\_symmetry\_3 \_geom\_angl e\_publ \_fl ag C12 Mo1 C13 87.4(5) . . ? C12 Mo1 C9 90.4(4) . . ? C13 Mo1 C9 88.4(4) . . ? C12 Mo1 C9 90. 4(4) C13 Mo1 C9 88. 4(4) . . ? C12 Mo1 C10 172. 9(5) . . ? C13 Mo1 C10 87. 3(4) . . ? C13 Mo1 C10 94. 2(4) . . ? ? . C12 Mo1 C11 86.9(4) C13 Mo1 C11 86.8(4) C9 Mo1 C11 174.7(4) ???? . . . . C12 Mo1 C1 94.0(5) . . . C13 Mo1 C1 97.0(5) . . . C13 Mo1 C1 178 1(4) C10 Mo1 C11 88.0(4). ? ? C12 Mo1 C1 94.0(3). C13 Mo1 C1 178.1(4)... C9 Mo1 C1 90.1(4)... C10 Mo1 C1 91.4(4)... C11 Mo1 C1 94.6(4)... . ? ? Ż C2 N1 C1 113.3(9) . C2 N1 C4 120.7(9) . C1 N1 C4 125.5(8) . ????? : C1 N1 C4 125.5(6) C3 N2 C1 110.7(8) C3 N2 C5A 123.2(10) C1 N2 C5A 123.5(10) C3 N2 C5B 118.9(13) C1 N2 C5B 114.8(14) • • . ???? . . . . . C5A N2 C5B 22.8(9) . . ? C5A N2 C5B 22.8(9) . . . N1 C1 N2 100.8(8) . . . N1 C1 Mo1 128.4(7) . . N2 C1 Mo1 130.7(7) . . N1 C2 C3 106.3(10) . . N2 C3 C2 107.7(10) . . O1 C9 Mo1 177.9(10) . . O2 C10 Mo1 175.7(10) . . O3 C11 Mo1 175.0(10) . ? ??? · ? · ? · · ? · · · ? 04 C12 Mo1 175.2(11) ? 05 C13 Mo1 176.6(9) . . ? C6A C5A N2 114.6(15) . . ? C5A C6A C7A 111.2(13) . . . . ? Ż C6A C7A C8A 110.8(15) C6B C5B N2 91(2) . . ? C5B C6B C7B 114(3) . . C8B C7B C6B 113(3) . . · . ´? ? ?

\_diffrn\_measured\_fraction\_theta\_max 0.934 \_diffrn\_reflns\_theta\_full 26.00

Cpd2Revi sed

|                                     | Cpd2Revi sed      |
|-------------------------------------|-------------------|
| _diffrn_measured_fraction_          | _theta_full 0.950 |
| <pre>_refine_diff_density_max</pre> | 1. 199            |
| _refine_diff_density_min            | -1.537            |
| _refine_diff_density_rms            | 0. 174            |

data\_publication\_text 'Marcus L. Cole' \_publ\_contact\_author\_name \_publ\_contact\_author\_address School of Chemistry University of New South Wales Sydney NSW 2052 Australia \_publ\_contact\_author\_email \_publ\_contact\_author\_phone \_publ\_contact\_author\_fax m. col e@unsw. edu. au ' +61 (0)2 93854678' ' +61 (0)2 93856141' \_audit\_creation\_method SHELXL-97 \_chemical\_name\_systematic \_chemi cal \_name\_common '[RhCl (NBD)(IBuMe)] 'Č15 H22 CI N2 Rh' \_chemi cal \_formul a\_moi ety 'C15 H22 CI N2 Rh' \_chemi cal \_formul a\_sum \_chemi cal \_compound\_source \_chemi cal \_properti es\_physi cal tol uene: n-pentane oxygen-sensi ti ve \_chemical\_melting\_point 393 \_exptl \_crystal \_description \_exptl \_crystal \_colour prism yellow \_diffrn\_ambient\_temperature 150(2)\_chemi cal \_formul a\_wei ght 368.71 loop \_atom\_type\_symbol \_atom\_type\_description \_atom\_type\_scat\_di spersi on\_real \_atom\_type\_scat\_di spersi on\_i mag \_atom\_type\_scat\_ourselsion\_imag \_atom\_type\_scat\_source Rh Rh -1. 1178 0. 9187 'International Tables Vol C Tables 4. 2. 6. 8 and 6. 1. 1. 4' Cl Cl 0. 1484 0. 1585 'International Tables Vol C Tables 4. 2. 6. 8 and 6. 1. 1. 4' N N 0. 0061 0. 0033 'International Tables Vol C Tables 4. 2. 6. 8 and 6. 1. 1. 4' C C 0. 0033 0. 0016 'International Tables Vol C Tables 4. 2. 6. 8 and 6. 1. 1. 4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' \_symmetry\_cell\_setting triclinic 'P -1' \_symmetry\_space\_group\_name\_H-M \_symmetry\_int\_tables\_number 2 \_chemi cal \_absol ute\_confi gurati on ? l oop\_ \_symmetry\_equiv\_pos\_as\_xyz \_\_\_\_\_ '\_x, y, z '-x, -y, -z' \_cell\_length\_a 7.8106(7) \_cell\_length\_b 9.8068(8) 11.1337(10) 99.797(4) \_cell\_length\_c \_cell\_angle\_alpha \_cell\_angle\_beta \_cell\_angle\_gamma 104.298(4) 106.636(4) \_cell\_volume 764.69(12) \_cell\_formula\_units\_Z 2 \_cell\_measurement\_temperature \_cell\_measurement\_reflns\_used 150(2)? Ż \_cell\_measurement\_theta\_min ? \_cell\_measurement\_theta\_max \_exptl\_crystal\_size\_max \_exptl\_crystal\_size\_mid \_exptl\_crystal\_size\_min 0.50 0.05 0.05 ? \_exptl\_crystal\_density\_meas \_exptl \_crystal \_densi ty\_di ffrn 1.601 Page 1

Cpd 4

Cpd 4 \_exptl\_crystal\_density\_method \_exptl\_crystal\_F\_000 \_exptl\_absorpt\_coefficient\_mu 'not measured' 376 1.280 \_exptl\_absorpt\_correction\_type empirical \_exptl\_absorpt\_correction\_T\_min 0.5670 0.9388 \_exptl\_absorpt\_correction\_T\_max \_exptl\_absorpt\_process\_details SADABS \_exptl \_special \_details ; ? \_di ffrn\_radi ati on\_probe x-ray MoK\a \_diffrn\_radiation\_type \_diffrn\_radiation\_wavelength 0.71073 \_diffrn\_source fine-focus sealed tube' \_diffrn\_radiation\_monochromator graphi te \_diffrn\_measurement\_device\_type Bruker X8 Apex' \_diffrn\_measurement\_method psi and omega scans' \_diffrn\_detector\_area\_resol\_mean \_diffrn\_standards\_number \_diffrn\_standards\_interval\_count ? ? \_diffrn\_standards\_interval\_time \_diffrn\_standards\_decay\_% \_diffrn\_reflns\_number 8671 \_di ffrn\_refl ns\_av\_R\_equi val ents 0.0324 \_diffrn\_reflns\_av\_sigmal/netl 0.0404 \_diffrn\_reflns\_limit\_h\_min \_diffrn\_reflns\_limit\_h\_max -9 7 \_diffrn\_reflns\_limit\_k\_min -12 \_diffrn\_reflns\_limit\_k\_max 13 \_diffrn\_reflns\_limit\_l\_min -12 \_diffrn\_reflns\_limit\_l\_max \_diffrn\_reflns\_theta\_min 15 2.97 diffrn\_reflns\_theta\_max 30.10 3406 \_refl ns\_number\_total \_reflns\_number\_gt 2914 \_refl ns\_threshol d\_expressi on >2sigma(I) \_computi ng\_data\_collecti on 'Bruker AXS Collect Software' Bruker Scal epack' \_computi ng\_cell\_refi nement \_computing\_data\_reduction \_computing\_structure\_solution X-Seed' SHELXS-97 (Sheldrick, 1990)' 'SHELXL-97 (Sheldrick, 1997) \_computing\_structure\_refinement ı X-Seed / POV-Ray \_computi ng\_mol ecul ar\_graphi cs 'Microsoft Office 2010' \_computing\_publication\_material \_refine\_special\_details Refinement of F^2<sup>^</sup> against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger. \_refine\_ls\_structure\_factor\_coef Fsqd \_refine\_ls\_matrix\_type full \_refine\_ls\_weighting\_scheme cal c \_refine\_ls\_weighting\_details 'calc w=1/[\s^2^(Fo^2^)+(0.0557P)^2^+1.5854P] where P=(Fo^2^+2Fc^2^)/3' \_atom\_sites\_solution\_primary di rect \_atom\_sites\_solution\_secondary di fmap \_atom\_sites\_solution\_hydrogens geom \_refine\_ls\_hydrogen\_treatment constr \_refine\_ls\_extinction\_method none \_refine\_ls\_extinction\_coef ?

Page 2

Cpd 4 3406 \_refi ne\_l s\_number\_refl ns \_refine\_ls\_number\_parameters \_refine\_ls\_number\_restraints 174 0 \_refine\_ls\_R\_factor\_all 0.0521 \_refi ne\_l s\_R\_factor\_gt 0.0403 \_refine\_ls\_wR\_factor\_ref \_refine\_ls\_wR\_factor\_gt 0.1080 0.0974 \_refine\_ls\_goodness\_of\_fit\_ref \_refine\_ls\_restrained\_S\_all 1.101 1.101 \_refi ne\_l s\_shi ft/su\_max 0.001 \_refine\_ls\_shift/su\_mean 0.000 loop \_atom\_site\_label \_atom\_site\_type\_symbol \_atom\_site\_fract\_x \_atom\_site\_fract\_y \_atom\_site\_fract\_z \_atom\_site\_U\_iso\_or\_equiv \_atom\_si te\_adp\_type \_atom\_si te\_occupancy \_atom\_site\_symmetry\_multiplicity \_atom\_site\_calc\_flag \_atom\_site\_refinement\_flags \_atom\_site\_disorder\_assembly atom\_site\_disorder\_group Rh1 Rh 0.67882(4) 0.61161(3) 0.78870(3) 0.01731(12) Uani 1 1 d CI 1 CI 0.60371(14) 0.81028(10) 0.72304(10) 0.0254(2) Uani 1 1 d . . . N1 N 1.0427(5) 0.8160(3) 0.9902(3) 0.0199(6) Uani 1 1 d . . . N2 N 1.0961(5) 0.7393(3) 0.8166(3) 0.0214(7) Uani 1 1 d . . . C1 C 0.9560(5) 0.7323(4) 0.8687(4) 0.0184(7) Uani 1 1 d . C2 C 1.2361(6) 0.8750(4) 1.0148(4) 0.0255(9) Uani 1 1 d . H2 H 1.3266 0.9372 1.0933 0.031 Uiso 1 1 cal c R . . C3 C 1.2696(6) 0.8267(4) 0.9058(4) 0.0257(8) Uani 1 1 d . 11d. H3 H 1. 3887 0. 8479 0. 8921 0. 031 Ui so 1 1 cal c R C4 C 0.9490(6) 0.8421(5) 1.0849(4) 0.0276(9) Uani 1 1 d . H4A H 0. 8229 0. 8410 1. 0418 0. 041 Ui so 1 1 cal c R . H4B H 1. 0221 0. 9383 1. 1462 0. 041 Ui so 1 1 cal c R . H4C H 0. 9390 0. 7647 1. 1308 0. 041 Ui so 1 1 cal c R . C5 C 1.0702(6) 0.6842(4) 0.6802(4) 0.0250(8) Uani 1 1 d . . . H5A H 0. 9398 0. 6152 0. 6368 0. 030 Ui so 1 1 cal c R . . H5B H 1. 1570 0. 6297 0. 6709 0. 030 Ui so 1 1 cal c R . . C6 C 1. 1079(6) 0. 8103(5) 0. 6169(4) 0. 0275(9) Uani 1 1 d . . H6A H 1.0041 Ó.8505 0.6095 0.033 Úiso 1 1 cálc R . H6B H 1.2257 0.8899 0.6722 0.033 Uiso 1 1 calc R C7 C 1. 1253(6) 0. 7638(5) 0. 4851(4) 0. 0266(9) Uani 1 1 d . . . H7A H 1. 0008 0. 6979 0. 4254 0. 032 Ui so 1 1 cal c R . . H7B H 1. 2127 0. 7075 0. 4897 0. 032 Ui so 1 1 cal c R . . C8 C 1. 1968(8) 0. 8944(5) 0. 4329(5) 0. 0364(11) Uani 1 1 d . . . H8A H 1. 1105 0. 9503 0. 4279 0. 055 Ui so 1 1 cal c R . . H8B H 1. 2039 0. 8594 0. 3471 0. 055 Ui so 1 1 cal c R . . H8C H 1. 3222 0. 9581 0. 4900 0. 055 Ui so 1 1 cal c R . . Hat H 1. 3222 0. 9381 0. 4900 0. 033 01 50 1 1 calc R . . . C9 C 0. 6854(6) 0. 4389(4) 0. 8763(4) 0. 0239(8) Uani 1 1 d . . . H9 H 0. 7814 0. 4927 0. 9552 0. 029 Uiso 1 1 calc R . . C10 C 0. 7089(6) 0. 4049(4) 0. 7549(4) 0. 0232(8) Uani 1 1 d . . . H10 H 0. 8236 0. 4304 0. 7351 0. 028 Uiso 1 1 calc R . . C11 C 0. 5089(6) 0. 3173(4) 0. 6601(4) 0. 0251(8) Uani 1 1 d . . . H11 H 0. 4995 0. 2588 0. 5744 0. 030 Ui so 1 1 cal c R C12 C 0. 4192(6) 0. 4368(4) 0. 6616(4) 0. 0229(8) Uani 1 1 d . . H12 H 0. 3849 0. 4799 0. 5933 0. 027 Ui so 1 1 cal c R . . C13 C 0. 3978(5) 0. 4698(4) 0. 7810(4) 0. 0229(8) Uani 1 1 d . H13 H 0. 3462 0. 5405 0. 8110 0. 027 Uiso 1 1 calc R . C14 C 0. 4730(6) 0. 3713(4) 0. 8561(4) 0. 0248(8) Uani 1 1 d . . . H14 H 0. 4339 0. 3582 0. 9336 0. 030 Ui so 1 1 cal c R . . C15 C 0. 4184(6) 0. 2319(4) 0. 7466(4) 0. 0291(9) Uani 1 1 d . . . H15A H 0. 2806 0. 1824 0. 7081 0. 035 Ui so 1 1 cal c R . . 11d.. H15B H 0.4785 0.1607 0.7725 0.035 Uiso 1 1 calc R .

Cpd 4

loop\_ \_atom\_site\_aniso\_label \_atom\_site\_aniso\_U\_11 \_atom\_si te\_ani so\_U\_22 \_atom\_si te\_ani so\_U\_33 \_atom\_si te\_ani so\_U\_23 \_atom\_si te\_ani so\_U\_13 CI 1 0. 0184(5) 0. 0256(5) 0. 0331(5) 0. 0095(4) 0. 0062(4) 0. 0094(4) N1 0. 0092(16) 0. 0221(15) 0. 0246(16) 0. 0045(12) 0. 0037(12) 0. 0022(12) N2 0. 0120(16) 0. 0237(16) 0. 0296(17) 0. 0077(13) 0. 0095(13) 0. 0050(13) C1 0. 0120(18) 0. 0206(17) 0. 0249(18) 0. 0089(14) 0. 0066(14) 0. 0064(14) C1 0.0120(18) 0.0206(17) 0.0249(18) 0.0089(14) 0.0066(14) 0.0064(14) C2 0.0082(18) 0.028(2) 0.034(2) 0.0082(17) 0.0016(15) 0.0010(15) C3 0.0101(19) 0.028(2) 0.037(2) 0.0102(17) 0.0065(16) 0.0050(15) C4 0.021(2) 0.033(2) 0.025(2) 0.0030(16) 0.0086(16) 0.0046(17) C5 0.019(2) 0.029(2) 0.030(2) 0.0053(16) 0.0125(16) 0.0098(16) C6 0.025(2) 0.028(2) 0.035(2) 0.0076(17) 0.0131(18) 0.0141(17) C7 0.018(2) 0.030(2) 0.029(2) 0.0070(17) 0.0069(16) 0.0070(17) C8 0.041(3) 0.040(3) 0.041(3) 0.020(2) 0.019(2) 0.021(2) C9 0.016(2) 0.0202(18) 0.0258(19) 0.0050(15) -0.0017(15) 0.0003(15) C10 0.0130(19) 0.0205(18) 0.033(2) -0.0023(15) 0.0049(16) 0.0024(15) C10 0.0130(19) 0.0205(18) 0.033(2) 0.0055(15) 0.0049(18) 0.0036(14) C11 0.014(2) 0.0209(18) 0.033(2) -0.0023(15) 0.0053(16) 0.0024(15) C12 0.0108(18) 0.0231(18) 0.0255(19) 0.0016(15) -0.0014(15) 0.0007(14) C13 0.0065(18) 0.0215(18) 0.034(2) 0.0017(15) 0.0055(15) -0.0016(14)C14 0.014(2) 0.0235(19) 0.032(2) 0.0067(16) 0.0077(16) 0.0002(15) C15 0.018(2) 0.0210(19) 0.040(2) 0.0030(17) 0.0046(17) 0.0017(16) \_geom\_special\_details All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving L.s. planes. l oop\_ \_geom\_bond\_atom\_site\_label\_1 \_geom\_bond\_atom\_site\_label\_2 \_geom\_bond\_distance \_geom\_bond\_site\_symmetry\_2 \_geom\_bond\_publ\_fl ag Rh1 C1 2.025(4) . ? Rh1 C10 2.088(4) . ? Rh1 C9 2.100(4) . ? Rh1 C12 2.196(4) . ? Rb1 C13 2.208(4) . ? Rh1 C13 2.208(4) Rh1 CI 1 2.3668(10) ? N1 C1 1.346(5) . N1 C2 1. 390(5) N1 C4 1. 453(5) N2 C1 1.350(5) N2 C3 1.392(5) N2 C5 1.465(5) C2 C3 1.341(6) ???? C5 C6 1.518(6) C6 C7 1.512(6) C7 C8 1.515(6) C9 C10 1.405(6) . C9 C14 1.542(6) C10 C11 1.549(6) C11 C12 1.527(6) C11 C15 1.550(6) C12 C13 1.377(6) ? C13 C14 1.528(6)

C14 C15 1.543(6)

loop \_geom\_angle\_atom\_site\_label\_1 \_geom\_angle\_atom\_site\_label\_2 \_geom\_angle\_atom\_site\_label\_3 \_geom\_angl e \_geom\_angle\_site\_symmetry\_1 \_geom\_angle\_site\_symmetry\_3 \_geom\_angl e\_si te\_symmetry\_3 \_geom\_angl e\_publ \_fl ag C1 Rh1 C10 97.01(15) . . ? C1 Rh1 C9 96.27(15) . . ? C10 Rh1 C9 39.20(16) . . ? C10 Rh1 C12 160.12(16) . . ? C10 Rh1 C12 67.34(15) . . ? C9 Rh1 C12 79.44(15) . . ? C1 Rh1 C13 156.78(15) . . ? C10 Rh1 C13 79.53(16) . . ? C9 Rh1 C13 66.47(16) . ? · · · · · C9 Rh1 C13 66. 4/(10) C12 Rh1 C13 36. 44(15) . . ? C1 Rh1 Cl 1 93. 02(10) . . ? C10 Rh1 Cl 1 153. 48(12) . . ? C9 Rh1 Cl 1 162. 48(13) . . ? C12 Pb1 Cl 1 96. 51(11) . . ? ? C12 Rh1 Cl 1 96.51(11) C13 Rh1 Cl 1 100.16(11) C1 N1 C2 111.3(3) . . ? C1 N1 C4 125.1(3) . . ? C2 N1 C4 123.6(3) . . ? C1 N2 C3 110.9(3) . . ? C1 N2 C5 125.2(3) . . ? C1 N2 C5 123.1(3) . . ? N1 C1 N2 104.7(3) . . ? N1 C1 Rh1 126.9(3) . . ? N2 C1 Rh1 128.3(3) . . ? N2 C1 Rh1 128.3(3) . . ? C3 C2 N1 106.4(4) . . ? C2 C3 N2 106.8(4) . . ? N2 C5 C6 110.8(3) . . ? C1 C6 C5 112.7(3) . . ? C1 C9 C14 106.4(3) . . . ? ? . C10 C9 C14 106. 4(3) C10 C9 Rh1 69. 9(2) C14 C9 Rh1 98. 4(2) ? . . . ? ? • C14 C9 Rh1 98.4(2). C9 C10 C11 105.8(4). C9 C10 Rh1 70.9(2). C11 C10 Rh1 97.5(2). C12 C11 C10 101.2(3) C12 C11 C15 100.3(3) C10 C11 C15 100.4(3) C13 C12 C11 106.7(4) C13 C12 Rh1 72.3(2). C11 C12 Rh1 93.9(2). C12 C13 C14 107.0(4) C12 C13 Rh1 71.3(2). C14 C13 Rh1 94.4(2). C13 C14 C9 100.7(3). · · · · · ? ? C13 C14 C9 100. 7(3) . C13 C14 C15 100. 3(3) C9 C14 C15 100. 8(3) . C14 C15 C11 94. 0(3) . ? . . . ? ? •

\_diffrn\_measured\_fraction\_theta\_max 0.760 \_diffrn\_reflns\_theta\_full 26.00 \_diffrn\_measured\_fraction\_theta\_full 0.955 \_refine\_diff\_density\_max 1.483 \_refine\_diff\_density\_min -1.532 \_refine\_diff\_density\_rms 0.147

Cpd 4

Cpd 5 data\_publication\_text 'Marcus L. Cole' \_publ\_contact\_author\_name \_publ \_contact\_author\_address School of Chemistry University of New South Wales Sydney NŠW 2052 Australia \_publ\_contact\_author\_email \_publ\_contact\_author\_phone \_publ\_contact\_author\_fax m. col e@unsw. edu. au ' +61 (0)2 93854678' ' +61 (0)2 93856141' \_audit\_creation\_method SHELXL-97 \_chemical\_name\_systematic \_chemi cal \_name\_common '[lrCl(COD)(lBuMe)' 'Č16 H26 Cl lr N2' \_chemi cal \_formul a\_moi ety C16 H26 CI Ir N2' \_chemi cal \_formul a\_sum \_chemi cal \_compound\_source \_chemi cal \_properti es\_physi cal THF: n-hexane oxygen-sensi ti ve \_chemical\_melting\_point 391 \_exptl \_crystal \_description \_exptl \_crystal \_colour bl ock yellow-orange \_diffrn\_ambient\_temperature 150(2)474.04 \_chemi cal \_formul a\_wei ght loop\_ \_atom\_type\_symbol \_atom\_type\_description \_atom\_type\_scat\_di spersi on\_real \_atom\_type\_scat\_di spersi on\_i mag atom\_type\_scat\_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Tables Vol C Tables 4.2.6.8 and 6.1.1.4 Tables Vol C Tables 4.2.6.8 and 6.1.1.4 Tables Vol C Tables 4.2.6.8 and 6.1.1.4  $^{\prime}$ N N 0.0061 0.0033 'International CI CI 0. 1484 0. 1585 'International Tables Vol C Tables 4. 2. 6. 8 and 6. 1. 1. 4' Ir Ir -1. 4442 7. 9887 'International Tables Vol C Tables 4. 2. 6. 8 and 6. 1. 1. 4' \_symmetry\_cell\_setting monocl i ni c \_symmetry\_space\_group\_name\_H-M C 2/c' \_symmetry\_int\_tables\_number 15 \_chemical\_absolute\_configuration unk l oop\_ \_symmetry\_equiv\_pos\_as\_xyz x, y, z 'x, y, z '-x, y, -z+1/2' 'x+1/2, y+1/2, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y, z-1/2' '-x+1/2, -y+1/2, -z' 'x+1/2, -y+1/2, z-1/2' 14.6989(4)\_cell\_length\_a \_cell\_length\_b \_cell\_length\_c \_cell\_angle\_alpha 17.1040(5) 14.3290(4) 90.00 \_cell\_angle\_beta 111.7000(10)\_cell\_angle\_gamma 90.00 \_cell\_volume \_cell\_formula\_units\_Z 3347.16(16) 8 \_cell\_measurement\_temperature 150(2)? \_cell\_measurement\_reflns\_used ? \_cell\_measurement\_theta\_min Page 1

Cpd 5 ? \_cell\_measurement\_theta\_max \_exptl\_crystal\_size\_max \_exptl\_crystal\_size\_mid 0.10 0.10 \_exptl\_crystal\_size\_min 0.08 \_exptl\_crystal\_density\_meas ? \_exptl \_crystal \_densi ty\_di ffrn 1.881 \_exptl\_crystal\_density\_method \_exptl\_crystal\_F\_000 'not measured' 1840 \_exptl\_absorpt\_coefficient\_mu 8.130 \_exptl\_absorpt\_correction\_type empirical \_exptl\_absorpt\_correction\_T\_min
\_exptl\_absorpt\_correction\_T\_max 0.4969 0.5624 \_exptl\_absorpt\_process\_details SADABS \_exptl\_special\_details ; ? \_diffrn\_radiation\_probe x-ray \_diffrn\_radiation\_type MoK\a 0.71073 \_diffrn\_radiation\_wavelength fine-focus sealed tube' \_diffrn\_source graphi te \_diffrn\_radiation\_monochromator \_diffrn\_measurement\_device\_type Bruker X8 Apex' \_diffrn\_measurement\_method psi and omega scans' ? \_diffrn\_detector\_area\_resol\_mean \_diffrn\_standards\_number ? \_diffrn\_standards\_interval\_count \_diffrn\_standards\_interval\_time \_diffrn\_standards\_decay\_% ? \_diffrn\_reflns\_number 21572 \_diffrn\_reflns\_av\_R\_equivalents 0.0333 \_diffrn\_reflns\_av\_sigmal/netl \_diffrn\_reflns\_limit\_h\_min 0.0239 -18 \_diffrn\_reflns\_limit\_h\_max 20 \_diffrn\_reflns\_limit\_k\_min -24 \_diffrn\_reflns\_limit\_k\_max \_diffrn\_reflns\_limit\_l\_min \_diffrn\_reflns\_limit\_l\_max 19 -18 19 \_diffrn\_reflns\_theta\_min 3.82 30.40 \_diffrn\_reflns\_theta\_max \_reflns\_number\_total \_reflns\_number\_gt 4432 3906 \_refl ns\_threshol d\_expressi on >2sigma(I) 'Bruker AXS Collect Software' 'Bruker Scalepack' 'X-Seed' \_computing\_data\_collection \_computing\_cell\_refinement \_computing\_data\_reduction ' SHELXS-97 (Shel dri ck, 1990)' ' SHELXL-97 (Shel dri ck, 1997)' \_computing\_structure\_solution \_computing\_structure\_refinement ÷ \_computing\_molecular\_graphics X-Seed / POV-Ray 'Microsoft Office 2010' \_computing\_publication\_material

\_refine\_special\_details

Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

\_refine\_ls\_structure\_factor\_coef Fsqd \_refine\_ls\_matrix\_type full \_refine\_ls\_weighting\_scheme calc Page 2

```
Cpd 5
```

\_refine\_ls\_weighting\_details 'calc w=1/[\s^2^(Fo^2^)+(0.0092P)^2^+10.1001P] where P=(Fo^2^+2Fc^2^)/3' \_atom\_sites\_solution\_primary di rect \_atom\_sites\_solution\_secondary di fmap geom \_atom\_sites\_solution\_hydrogens \_refine\_ls\_hydrogen\_treatment constr \_refine\_ls\_extinction\_method none \_refine\_ls\_extinction\_coef \_refine\_ls\_number\_refins 4432 \_refine\_l s\_number\_parameters \_refine\_l s\_number\_restraints \_refine\_l s\_R\_factor\_all 194 n 0.0236 \_refine\_ls\_R\_factor\_gt 0.0178 \_refine\_ls\_wR\_factor\_ref 0.0410 \_refi ne\_l s\_wR\_factor\_gt 0.0383 \_refine\_ls\_goodness\_of\_fit\_ref \_refine\_ls\_restrained\_S\_all 1.050 1.050 \_refine\_ls\_shift/su\_max 0.002 \_refi ne\_l s\_shi ft/su\_mean 0.000 l oop \_atom\_site\_label \_atom\_site\_type\_symbol \_atom\_si te\_fract\_x \_atom\_si te\_fract\_y \_atom\_site\_fract\_ź \_atom\_site\_U\_iso\_or\_equiv \_atom\_site\_adp\_type \_atom\_site\_occupancy \_atom\_site\_symmetry\_multiplicity \_atom\_site\_calc\_flag \_atom\_site\_refinement\_flags \_atom\_si te\_di sorder\_assembl y \_atom\_si te\_di sorder\_group Ir1 Ir 0.207140(7) 0.344706(5) 0.208336(7) 0.01758(4) Uani 1 1 d . CI1 CI 0. 19929(5) 0. 47242(4) 0. 26842(5) 0. 03061(15) Uani 1 1 d . . N1 N 0.02441(16) 0.38706(13) 0.02902(16) 0.0217(4) Uani 1 1 d . . . N2 N 0.15248(16) 0.41154(12) -0.00367(16) 0.0206(4) Uani 1 1 d . . . C1 C 0.12343(19) 0.38183(14) 0.06876(18) 0.0190(5) Uani 1 1 d . . . 1 d . . . C2 C -0.0074(2) 0.42054(15) -0.06573(19) 0.0247(5) Uani 1 1 d . . H2 H -0.0733 0.4308 -0.1081 0.030 Ui so 1 1 cal c R . . C3 C 0.0731(2) 0.43574(15) -0.08604(19) 0.0243(5) Uani 1 1 d . . . H3 H 0.0750 0.4587 -0.1456 0.029 Uiso 1 1 calc R . . C4 C -0.0395(2) 0.36088(18) 0.0802(2) 0.0308(6) Uani 1 1 d . . H4A H -0.0693 0.3107 0.0520 0.046 Ui so 1 1 cal c R . . H4B H -0.0910 0.3998 0.0710 0.046 Ui so 1 1 cal c R . . H4C H -0.0010 0.3545 0.1521 0.046 Ui so 1 1 cal c R . . C5 C 0.2552(2) 0.42159(18) 0.0078(2) 0.0280(6) Uani 1 1 d . . . H5A H 0. 2609 Ó. 4140 -0. 0582 0. 034 UÍ so 1 1 caí c R . H5B H 0. 2952 0. 3808 0. 0539 0. 034 Ui so 1 1 cal c R C6 C 0.2954(2) 0.50090(19) 0.0482(2) 0.0360(7) Uani 1 1 d . B . H6A H 0. 2888 0. 5089 0. 1138 0. 043 Ui so 1 1 cal c R . H6B H 0. 2562 0. 5417 0. 0016 0. 043 Ui so 1 1 cal c R . C7 C 0. 4019(3) 0. 5104(4) 0. 0615(4) 0. 0832(18) Uani 1 1 d . . . H7A H 0. 4365 0. 4675 0. 1072 0. 100 Ui so 1 1 cal c R A 1 H7B H 0. 4044 0. 4971 -0. 0048 0. 100 Ui so 1 1 cal c R A 1 C8A C 0. 4583(5) 0. 5700(4) 0. 0916(5) 0. 0459(19) Uani 0. 542(8) 1 d P B 1 H8A1 H 0. 4642 0. 5837 0. 1600 0. 069 Ui so 0. 542(8) 1 calc PR B 1 H8A2 H 0. 4305 0. 6143 0. 0467 0. 069 Ui so 0. 542(8) 1 cal c PR B 1 H8A3 H 0. 5232 0. 5576 0. 0910 0. 069 Ui so 0. 542(8) 1 cal c PR B 1 C8B C 0. 4674(5) 0. 4690(5) 0. 1520(6) 0. 046(2) Uani 0. 458(8) 1 d P B 2 H8B1 H 0. 5345 0. 4883 0. 1699 0. 069 Ui so 0. 458(8) 1 calc PR B 2 H8B2 H 0. 4656 0. 4128 0. 1383 0. 069 Ui so 0. 458(8) 1 cal c PR B 2 H8B3 H 0. 4455 0. 4784 0. 2079 0. 069 Ui so 0. 458(8) 1 cal c PR B 2 C9 C 0. 1664(2) 0. 22840(16) 0. 1663(2) 0. 0284(6) Uani 1 1 d . . . H9 H 0. 1085 0. 2484 0. 1163 0. 034 Ui so 1 1 cal c R . C10 C 0. 2568(2) 0. 24438(15) 0. 1554(2) 0. 0284(6) Uani 1 1 d . . . H10 H 0. 2558 0. 2759 0. 1005 0. 034 Uiso 1 1 calc R . .

Page 3

Cpd 5 C11 C 0. 3548(2) 0. 21393(18) 0. 2266(2) 0. 0326(6) Uani 1 1 d . . . H11A H 0. 3977 0. 2041 0. 1884 0. 039 Ui so 1 1 cal c R . . H11B H 0. 3447 0. 1635 0. 2553 0. 039 Ui so 1 1 cal c R . . C12 C 0.4063(2) 0.27098(18) 0.3126(2) 0.0309(6) Uani 1 1 d . . . H12A H 0. 4479 0. 2409 0. 3720 0. 037 Ui so 1 1 cal c R . . H12B H 0. 4496 0. 3057 0. 2922 0. 037 Ui so 1 1 cal c R . . C13 C 0. 3359(2) 0. 32067(17) 0. 3416(2) 0. 0254(6) Uani 1 1 d . . . H13 H 0. 3482 0, 3753 0. 3488 0. 030 Ui so 1 1 cal c R 

 H13
 H
 0.3482
 0.3753
 0.3488
 0.030
 0150
 T
 Calc
 R
 .

 C14
 C
 0.2548(2)
 0.29273(17)
 0.35846(19)
 0.0256(6)
 Uani
 1
 1
 d
 .

 H14
 H
 0.2134
 0.3294
 0.3732
 0.031
 Ui so
 1
 calc
 R
 .

 C15
 C
 0.2288(2)
 0.20684(18)
 0.3546(2)
 0.0339(7)
 Uani
 1
 d
 .
 .

 H15A
 H
 0.2007
 0.1959
 0.4063
 0.041
 Ui so
 1
 calc
 R
 .

 H15B
 H
 0.2892
 0.1753
 0.3709
 0.041
 Ui so
 1
 calc
 R
 .

 C16 C 0.1552(2) 0.18181(18) 0.2515(3) 0.0366(7) Uani 1 1 d . . . H16A H 0.1644 0.1256 0.2412 0.044 Uiso 1 1 calc R . . H16B H 0.0879 0.1888 0.2503 0.044 Uiso 1 1 calc R . loop\_ \_atom\_site\_aniso\_label \_atom\_site\_aniso\_U\_11 \_atom\_si te\_ani so\_U\_22 \_atom\_site\_aniso\_U\_33 \_atom\_si te\_ani so\_U\_23 \_atom\_si te\_ani so\_U\_13 \_atom\_si te\_ani so\_U\_12  $[r1 \ 0.0224\overline{3}(6) \ 0.01811(5) \ 0.01403(5) \ 0.00105(3) \ 0.00887(4) \ 0.00296(4)$ Cl 1 0. 0429(4) 0. 0251(3) 0. 0230(3) -0. 0042(3) 0. 0113(3) 0. 0098(3) N1 0. 0246(11) 0. 0197(10) 0. 0199(11) 0. 0005(8) 0. 0070(9) -0. 0020(9) N2 0. 0262(11) 0. 0194(10) 0. 0169(10) 0. 0003(8) 0. 0088(9) 0. 0002(9) C1 0. 0244(12) 0. 0165(11) 0. 0170(11) -0. 0005(9) 0. 0087(10) 0. 0004(10) C1 0.0244(12) 0.0165(11) 0.0170(11) -0.0005(9) 0.0087(10) 0.0004(10) C2 0.0282(14) 0.0224(13) 0.0174(12) -0.0004(10) 0.0013(10) -0.0009(11) C3 0.0349(15) 0.0198(12) 0.0164(12) 0.0020(10) 0.0072(11) 0.0014(11) C4 0.0247(14) 0.0363(16) 0.0340(16) 0.0024(13) 0.0138(12) -0.0051(12) C5 0.0278(14) 0.0348(15) 0.0261(14) 0.0061(12) 0.0154(12) 0.0052(12) C6 0.0312(16) 0.0465(18) 0.0270(15) 0.0051(13) 0.0071(13) -0.0120(14) C7 0.0279(19) 0.138(5) 0.069(3) 0.058(3) 0.0011(19) -0.021(2) C8A 0.039(4) 0.051(4) 0.046(4) -0.014(3) 0.015(3) -0.019(3) C8B 0.026(3) 0.054(5) 0.050(5) 0.014(4) 0.003(3) 0.002(3) C9 0.0352(15) 0.0183(12) 0.0270(14) 0.0020(11) 0.0061(12) 0.0018(11) C10 0.0458(17) 0.0168(12) 0.0260(14) -0.0007(10) 0.0172(13) 0.0056(12)  $\begin{array}{c} \text{Cy} \ 0.\ 0.352(15) \ 0.\ 0.163(12) \ 0.\ 0.270(14) \ 0.\ 0.020(11) \ 0.\ 0.007(10) \ 0.\ 0.0172(13) \ 0.\ 0.056(12) \\ \text{C11} \ 0.\ 0.395(16) \ 0.\ 0.276(14) \ 0.\ 0.369(16) \ 0.\ 0.021(13) \ 0.\ 0.213(14) \ 0.\ 0.017(13) \\ \text{C12} \ 0.\ 0.260(14) \ 0.\ 0.313(15) \ 0.\ 0.373(16) \ 0.\ 0.044(13) \ 0.\ 0.0141(13) \ 0.\ 0.083(12) \\ \text{C13} \ 0.\ 0.276(14) \ 0.\ 0.265(13) \ 0.\ 0.0232(13) \ 0.\ 0.039(11) \ 0.\ 0.008(11) \ 0.\ 0.098(11) \\ \text{C14} \ 0.\ 0.018(11) \ 0.\ 0.098(11) \\ \text{C15} \ 0.\ 0.018(11) \ 0.\ 0.098(11) \\ \text{C16} \ 0.\ 0.018(11) \ 0.\ 0.098(11) \\ \text{C17} \ 0.\ 0.018(11) \ 0.\ 0.098(11) \\ \text{C16} \ 0.\ 0.018(11) \ 0.\ 0.098(11) \\ \text{C17} \ 0.\ 0.018(11) \ 0.\ 0.098(11) \\ \text{C17} \ 0.\ 0.018(11) \ 0.\ 0.098(11) \\ \text{C18} \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.098(11) \\ \text{C18} \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11) \ 0.\ 0.018(11)$ C14 0. 0262(13) 0. 0340(15) 0. 0182(12) 0. 0069(11) 0. 0100(11) 0. 0077(11) C15 0. 0359(16) 0. 0364(16) 0. 0323(16) 0. 0174(13) 0. 0160(13) 0. 0047(13) C16 0. 0383(17) 0. 0279(15) 0. 0417(18) 0. 0104(13) 0. 0124(15) -0. 0043(13)

\_geom\_special\_details

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

l oop\_ \_geom\_bond\_atom\_si te\_l abel \_1 \_geom\_bond\_atom\_si te\_l abel \_2 \_geom\_bond\_di stance \_geom\_bond\_si te\_symmetry\_2 \_geom\_bond\_publ\_fl ag Ir1 C1 2.024(2) . ? Ir1 C9 2.101(3) . ? Ir1 C10 2.112(3) . ? Ir1 C13 2.174(3) . ? Ir1 C14 2.189(3) . ?

| I r1<br>N1<br>N1<br>N2<br>N2<br>C2<br>C5<br>C6<br>C7<br>C7<br>C9<br>C10<br>C11<br>C12<br>C13<br>C14<br>C15                                                                                                                                              | CI<br>C1<br>C2<br>C4<br>C1<br>C3<br>C5<br>C3<br>C6<br>C7<br>C8A<br>C3<br>C6<br>C7<br>C8B<br>C10<br>C11<br>C11<br>C11<br>C11<br>C11<br>C11<br>C11<br>C11 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 366<br>6(3)<br>6(3)<br>6(3)<br>6(3)<br>6(3)<br>6(3)<br>6(3)<br>6   | 5(7)<br>)<br>)<br>)<br>)<br>)<br>)<br>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ???????????????????????????????????????                      |                                                          |                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|----------------|
| I oo $\_gee$ $\_c1$ C1 C9 C10 C13 C19 C10 C13 C19 C10 C13 C14 C1 C21 C13 N1N2 C3 C2 N2 C5 C8AA C8B C100 C16 C9 C110 C13 C12 | P_<br>om_<br>om_<br>om_<br>om_<br>om_<br>lr1<br>lr1<br>lr1<br>lr1<br>lr1<br>lr1<br>lr1<br>lr1<br>lr1<br>lr1                                             | anglaangl<br>anglaangl<br>anglaangl<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133)<br>(C133) | e_a<br>e_a<br>e_a<br>e_a<br>e_a<br>e_a<br>e_a<br>e_a<br>e_a<br>e_a | to m i tel $55$ (22)<br>124770 (20)<br>124770 (20)<br>124770 (20)<br>1000(222) (20)<br>1000(22) (20) | <br>te_<br>te_<br>(mme<br>)))))))))))))))))))))))))))))))))) | oel<br>oel<br>y_3<br>??????????????????????????????????? | _1<br>_2<br>_3 |

Page 5

Cpd 5

C14 C13 C12 125.1(3) . . ? C14 C13 Ir1 72.10(16) . . ? C12 C13 Ir1 109.09(19) . . ? C13 C14 C15 123.4(3) . . ? C13 C14 Ir1 70.86(15) . . ? C15 C14 Ir1 111.94(19) . . ? C14 C15 C16 112.6(2) . . ? C9 C16 C15 112.4(2) . . ? \_diffrn\_measured\_fraction\_theta\_max 0.877 \_diffrn\_reflns\_theta\_full 26.00 \_diffrn\_measured\_fraction\_theta\_full 0.995 \_refine\_diff\_density\_max 1.260 \_refine\_diff\_density\_min -0.891 \_refine\_diff\_density\_rms 0.103

Cpd 6 data\_publication\_text 'Marcus L. Cole' \_publ\_contact\_author\_name \_publ\_contact\_author\_address School of Chemistry University of New South Wales Sydney NŚW 2052 Australia \_publ\_contact\_author\_email \_publ\_contact\_author\_phone \_publ\_contact\_author\_fax m. col e@unsw. edu. au ' +61 (0)2 9385 4678' ' +61 (0)2 9385 6141' \_audit\_creation\_method 'SHELXL-97' ? \_chemical\_name\_systematic '[PdCI 2(I BuMe) 2]. 0. 5C7H8' 'C16 H28 CI 2 N4 Pd. C3. 5 H4' \_chemi cal \_name\_common \_chemi cal \_formul a\_moi ety 'C19.50 H32 CI 2 N4 Pd' \_chemi cal \_formul a\_sum \_chemi cal \_compound\_source \_chemi cal \_mel ti ng\_poi nt ' tol uene' 407 needl e \_exptl \_crystal \_description \_exptl \_crystal \_col our yellow 150(2) \_diffrn\_ambient\_temperature \_chemi cal \_formul a\_wei ght 499.79 loop\_ \_atom\_type\_symbol \_atom\_type\_description \_atom\_type\_scat\_di spersi on\_real \_atom\_type\_scat\_dispersion\_imag \_atom\_type\_scat\_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cl Cl 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Pd Pd -0.9988 1.0072 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' \_symmetry\_cell\_setting triclinic 'P -1' \_symmetry\_space\_group\_name\_H-M \_symmetry\_int\_tables\_number 2 \_cȟemi cal̆\_absol ute\_confi gurati on ? loop \_symmetry\_equiv\_pos\_as\_xyz 'x, y, z' '-x, -y, -z' \_cell\_length\_a \_cell\_length\_b \_cell\_length\_c 7.9595(16) 8.4621(17) 18.293(4) 94. 86(3) 99. 38(3) 114. 37(3) \_cel | \_angl e\_al pha \_cell\_angle\_beta \_cell\_angle\_gamma \_cell\_volume 1091.4(4) \_cell\_formula\_units\_Z 2 \_cell\_measurement\_temperature \_cell\_measurement\_reflns\_used \_cell\_measurement\_theta\_min 150(2) ? ? Ż \_cell\_measurement\_theta\_max \_exptl\_crystal\_size\_max \_exptl\_crystal\_size\_mid \_exptl\_crystal\_size\_min \_exptl\_crystal\_density\_meas 0.20 0.10 0.10 1.521 \_exptl \_crystal \_densi ty\_di ffrn \_exptl\_crystal\_density\_method 'not measured'

Page 1

Cpd 6 \_exptl \_crystal \_F\_000 514 \_exptl\_absorpt\_coefficient\_mu \_exptl\_absorpt\_correction\_type 1.107 empirical \_exptl\_absorpt\_correction\_T\_min 0. 8090 \_exptl\_absorpt\_correction\_T\_max 0.8974 \_exptl\_absorpt\_process\_details SADABS \_exptl\_special\_details ; ? \_diffrn\_radiation\_probe x-ray diffrn radiation type MoK\a \_diffrn\_radiation\_wavelength 0.71073 \_diffrn\_source fine-focus sealed tube' \_diffrn\_radiation\_monochromator graphi te' \_diffrn\_measurement\_device\_type Bruker X8 Apex' \_diffrn\_measurement\_method psi and omega scans' \_diffrn\_detector\_area\_resol\_mean \_diffrn\_standards\_number \_diffrn\_standards\_interval\_count ? \_diffrn\_standards\_interval\_time \_diffrn\_standards\_decay\_% \_diffrn\_reflns\_number 12402 \_diffrn\_reflns\_av\_R\_equivalents 0.0898 \_diffrn\_reflns\_av\_sigmal/netl 0.1731 \_diffrn\_reflns\_limit\_h\_min -11 \_diffrn\_reflns\_limit\_h\_max 10 \_diffrn\_reflns\_limit\_k\_min -10 \_diffrn\_reflns\_limit\_k\_max 11 \_diffrn\_reflns\_limit\_l\_min -18 \_diffrn\_reflns\_limit\_l\_max 24 \_diffrn\_reflns\_theta\_min \_diffrn\_reflns\_theta\_max 2.88 30.46 \_refl ns\_number\_total 5236 \_refl ns\_number\_gt 2602 \_refl ns\_threshol d\_expressi on >2sigma(I) 'Bruker AXS Collect Software' \_computi ng\_data\_collecti on \_computing\_cell\_refinement Bruker Scalepack' \_computi ng\_data\_reducti on X-Seed' 'SHELXS-97 (Sheldrick, 1990)' 'SHELXL-97 (Sheldrick, 1997)' \_computing\_structure\_solution \_computing\_structure\_refinement 'X-Seed / POV-Ray \_computing\_molecular\_graphics 'Microsoft Office 2010' \_computing\_publication\_material \_refine\_special\_details Refinement of F<sup>2</sup> against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2$  > 2sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger. \_refi ne\_l s\_structure\_factor\_coef Fsqd \_refine\_ls\_matrix\_type full \_refine\_ls\_weighting\_scheme cal c \_refine\_ls\_weiğhtinğ\_details 'calc w=1/[\s^2^(Fo^2^)+(0.1155P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' \_atom\_sites\_solution\_primary di rect \_atom\_sites\_solution\_secondary di fmap \_atom\_sites\_solution\_hydrogens geom \_refine\_ls\_hydrogen\_treatment constr \_refine\_ls\_extinction\_method none \_refine\_ls\_extinction\_coef 7 \_refi ne\_l s\_number\_refl ns 5236 Page 2

Cpd 6 \_refine\_ls\_number\_parameters \_refine\_ls\_number\_restraints \_refine\_ls\_R\_factor\_all 279 0 0.1849 \_refine\_ls\_R\_factor\_gt 0.0796 \_refi ne\_l s\_wR\_factor\_ref 0.2275 \_refine\_ls\_wR\_factor\_gt 0.1766 \_refi ne\_l s\_goodness\_of\_fi t\_ref \_refi ne\_l s\_restrai ned\_S\_al l 0.981 0.981 \_refine\_ls\_shift/su\_max 0.001 \_refi ne\_l s\_shi ft/su\_mean 0.000 l oop\_ \_atom\_site\_label \_atom\_site\_type\_symbol \_atom\_site\_fract\_x \_atom\_site\_fract\_y \_atom\_site\_fract\_z \_atom\_site\_U\_iso\_or\_equiv \_atom\_site\_adp\_type \_atom\_site\_occupancy \_atom\_site\_symmetry\_multiplicity \_atom\_site\_calc\_flag \_atom\_site\_refinement\_flags \_atom\_si te\_di sorder\_assembl y \_atom\_si te\_di sorder\_group Pd1 Pd 0. 18050(10) 0. 36551(9) 0. 16781(4) 0. 0325(3) Uani 1 1 d . . CI1 CI 0.4562(4) 0.6041(4) 0.2291(2) 0.0772(10) Uani 1 1 d . CI 2 CI -0. 0980(4) 0. 1260(4) 0. 10618(18) 0. 0644(8) Uani 1 1 d . N1 N 0. 1139(11) 0. 6468(10) 0. 0909(5) 0. 044(2) Uani 1 1 d . N2 N -0. 0642(10) 0. 5626(10) 0. 1712(5) 0. 044(2) Uani 1 1 d . . . N3 N 0. 3980(10) 0. 1459(10) 0. 1567(5) 0. 0408(19) Uani 1 1 d . . N4 N 0. 2943(13) 0. 1252(12) 0. 2574(5) 0. 057(2) Uani 1 1 d . B . C1 C 0. 0678(12) 0. 5350(11) 0. 1406(6) 0. 040(2) Uani 1 1 d . . . C2 C 0. 0116(16) 0. 7438(14) 0. 0896(7) 0. 058(3) Uani 1 1 d . . . H2 H 0.0174 0.8301 0.0588 0.069 Uiso 1 1 calc R C3 C -0.0968(16) 0.6950(14) 0.1393(7) 0.060(3) Uani 1 1 d . . H3 H -0. 1812 0. 7414 0. 1510 0. 072 Ui so 1 1 cal c R . . C4 C 0. 2483(16) 0. 6597(14) 0. 0467(6) 0. 055(3) Uani 1 1 d . . . H4A H 0. 3761 0. 7254 0. 0779 0. 082 Ui so 1 1 cal c R . . H4B H 0.2315 0.7213 0.0051 0.082 Uiso 1 1 calc R . H4C H 0. 2302 0. 5414 0. 0265 0. 082 Ui so 1 1 cal c R . . C5 C -0. 1490(14) 0. 4730(14) 0. 2286(6) 0. 051(3) Uani 1 1 d . . . H5A H -0. 1823 0. 3461 0. 2159 0. 061 Ui so 1 1 cal c R . . H5B H -0. 2673 0. 4850 0. 2296 0. 061 Uiso 1 1 calc R C6 C -0. 021(2) 0. 544(2) 0. 3051(8) 0. 110(6) Uani 1 1 d . . . H6A H 0. 1004 0. 5390 0. 3029 0. 131 Ui so 1 1 cal c R . . H6B H 0. 0067 0. 6695 0. 3185 0. 131 Ui so 1 1 cal c R . . C7 C -0. 097(3) 0. 450(4) 0. 3647(12) 0. 164(11) Uani 1 1 d . . . H7A H -0. 1650 0. 3228 0. 3439 0. 197 Ui so 1 1 cal c R . . H7B H 0.0101 0.4664 0.4053 0.197 Uiso 1 1 calc R C8 C -0. 222(5) 0. 500(5) 0. 397(2) 0. 263(19) Uani 1 1 d . . . H8A H -0. 1606 0. 6275 0. 4149 0. 394 Ui so 1 1 cal c R . . H8B H -0. 2526 0. 4387 0. 4397 0. 394 Ui so 1 1 cal c R H8C H -0. 3378 0. 4688 0. 3594 0. 394 Ui so 1 1 cal c R . . C9 C 0. 2988(13) 0. 2002(12) 0. 1960(6) 0. 041(2) Uani 1 1 d . . . C10 C 0. 4518(14) 0. 0303(13) 0. 1927(7) 0. 049(3) Uani 1 1 d . . . H10 H 0. 5195 -0. 0297 0. 1754 0. 058 Ui so 1 1 cal c R . . C11 C 0. 3895(17) 0. 0205(15) 0. 2561(8) 0. 066(3) Uani 1 1 d . . . H11 H 0. 4071 -0. 0459 0. 2935 0. 079 Ui so 1 1 cal c R . . C12 C 0. 4351(15) 0. 1926(16) 0. 0870(6) 0. 057(3) Uani 1 1 d . . . H12A H 0. 3503 0. 0949 0. 0465 0. 085 Ui so 1 1 cal c R H12B H 0.5665 0.2183 0.0861 0.085 Uiso 1 1 calc R H12C H 0. 4142 0. 2971 0. 0798 0. 085 Ui so 1 1 cal c R C13 C 0. 216(3) 0. 162(3) 0. 3220(11) 0. 101(6) Uani 1 1 d . . . H13A H 0. 2960 0. 1567 0. 3684 0. 121 Ui so 1 1 cal c R A 1 H13B H 0. 2319 0. 2850 0. 3253 0. 121 Ui so 1 1 cal c R A 1 C14A C 0.040(4) 0.063(3) 0.3232(12) 0.066(7) Uani 0.532(15) 1 d P B 1 H14A H 0.0215 -0.0612 0.3172 0.079 Ui so 0.532(15) 1 cal c PR B 1

Page 3

Cpd 6 H14B H -0. 0412 0. 0733 0. 2785 0. 079 Ui so 0. 532(15) 1 cal c PR B 1 C14B C 0. 331(9) 0. 304(9) 0. 380(2) 0. 18(3) Uani 0. 468(15) 1 d P B 2 H14C H 0. 3924 0. 4116 0. 3587 0. 219 Ui so 0. 468(15) 1 cal c PR B 2 H14D H 0. 2518 0. 3257 0. 4128 0. 219 Ui so 0. 468(15) 1 cal c PR B 2 C15A C -0.035(4) 0.097(3) 0.3930(12) 0.075(8) Uáni 0.532(15) 1 d P B 1 H15A H 0.0466 0.0870 0.4375 0.090 Uiso 0.532(15) 1 calc PR B 1 -0.0161 0.2214 0.3988 0.090 Uiso 0.532(15) 1 calc PR B 1 H15B H H15B H -0.0161 0.2214 0.3988 0.090 0150 0.532(15) 1 Calc PR B 1 C15B C 0.453(6) 0.271(6) 0.418(3) 0.132(16) Uani 0.468(15) 1 d P B 2 H15C H 0.5482 0.2725 0.3893 0.158 Ui so 0.468(15) 1 calc PR B 2 H15D H 0.3947 0.1543 0.4334 0.158 Ui so 0.468(15) 1 calc PR B 2 C16A C -0.241(3) -0.017(4) 0.3962(16) 0.111(13) Uani 0.532(15) 1 d P B 1 H16A H -0.3178 -0.0650 0.3449 0.167 Ui so 0.532(15) 1 calc PR B 1 H16B H -0.2899 0.0552 0.4225 0.167 Ui so 0.532(15) 1 calc PR B 1 H16B H -0.2470 0.1126 0.4231 0.167 Ui so 0.532(15) 1 calc PR B 1 H16C H -0. 2470 -0. 1136 0. 4231 0. 167 Ui so 0. 532(15) 1 cal c PR B 1 C16B C 0. 543(7) 0. 418(7) 0. 487(3) 0. 16(2) Uani 0. 468(15) 1 d P B 2 H16D H 0. 5457 0. 5273 0. 4726 0. 235 Ui so 0. 468(15) 1 cal c PR B 2 H16E H 0. 6722 0. 4345 0. 5071 0. 235 Ui so 0. 468(15) 1 cal c PR B 2 H16F H 0. 4686 0. 3847 0. 5257 0. 235 Uiso 0. 468(15) 1 calc PR B 2 C17 C 0. 380(4) 0. 031(3) 0. 5412(13) 0. 082(9) Uani 0. 56(2) 1 d P . H17 H 0. 2994 0. 0465 0. 5713 0. 098 Ui so 0. 56(2) 1 cal c PR . 3 C18 C 0. 566(5) 0. 162(4) 0. 5490(14) 0. 089(9) Uani 0. 56(2) 1 d P . H18 H 0. 6094 0. 2741 0. 5789 0. 107 Ui so 0. 56(2) 1 cal c PR . 3 3 3 C19 C 0. 682(4) 0. 120(4) 0. 5115(17) 0. 090(9) Uani 0. 56(2) 1 d P . 3 C20 C 0. 877(11) 0. 285(9) 0. 569(2) 0. 14(3) Uani 0. 30 1 d P C 3 H20A H 0. 9048 0. 2471 0. 6171 0. 211 Ui so 0. 30 1 cal c PR C 3 H20B H 0. 8534 0. 3892 0. 5788 0. 211 Ui so 0. 30 1 cal c PR C 3 H20C H 0.9855 0.3151 0.5454 0.211 Uiso 0.30 1 calc PR C 3 loop\_ \_atom\_site\_aniso\_label \_atom\_site\_aniso\_U\_11 \_atom\_site\_aniso\_U\_22 \_atom\_si te\_ani so\_U\_33 \_atom\_si te\_ani so\_U\_23 \_atom\_si te\_ani so\_U\_13 \_atom\_site\_aniso\_U\_12  $\begin{array}{c} \mathsf{Pd1} & 0.0344(4) & 0.0238(4) & 0.0473(4) & 0.0083(3) & 0.0098(3) & 0.0197(3) \\ \mathsf{Cl} & 1 & 0.0652(19) & 0.057(2) & 0.116(3) & 0.0072(19) & -0.0004(18) & 0.0419(17) \\ \mathsf{Cl} & 2 & 0.0707(19) & 0.0441(16) & 0.082(2) & 0.0098(15) & 0.0023(15) \\ \mathbf{0} & 0.023(15) & 0.0334(15) \\ \end{array}$ N1 0. 045(5) 0. 025(4) 0. 062(5) 0. 013(4) 0. 002(4) 0. 018(4) N2 0. 034(4) 0. 031(4) 0. 068(6) -0.007(4) -0.007(4) 0.023(4)N3 0. 035(4) 0. 031(4) 0. 057(5) -0.006(4) 0.001(4) 0.023(4)N4 0. 074(6) 0. 056(6) 0. 071(6) 0. 033(5) 0. 031(5) 0. 049(5) C1 0. 028(5) 0. 023(5) 0. 065(6) -0.005(5) -0.006(4) 0.014(6) 0.023(5)C1 0.028(5) 0.023(5) 0.065(6) -0.005(5) -0.006(4) 0.015(4)C2 0.056(7) 0.030(6) 0.081(8) 0.009(6) -0.014(6) 0.023(5)C3 0.046(6) 0.034(6) 0.091(9) -0.022(6) -0.028(6) 0.031(5)C4 0.058(7) 0.032(6) 0.064(7) 0.006(5) 0.003(6) 0.014(5) C5 0.040(6) 0.042(6) 0.069(7) -0.008(6) 0.005(5) 0.022(5)C6 0.098(12) 0.130(15) 0.064(9) -0.006(10) 0.037(9) 0.013(11)C7 0.084(13) 0.24(3) 0.128(17) -0.027(19) 0.016(12) 0.051(17)C8 0.30(4) 0.33(5) 0.29(4) 0.04(4) 0.08(3) 0.26(4) C9 0.036(5) 0.026(5) 0.061(6) 0.011(5) 0.006(5) 0.016(4) C10 0.045(6) 0.027(5) 0.078(8) 0.000(5) -0.001(5) 0.027(5)C11 0.069(8) 0.043(7) 0.094(9) 0.027(7) 0.000(7) 0.036(6) C12 0.048(6) 0.065(8) 0.060(7) -0.003(6) 0.002(5) 0.034(6)C13 0.120(14) 0.123(15) 0.126(15) 0.078(12) 0.076(12) 0.088(13) C14A 0.074(17) 0.053(15) 0.061(14) -0.010(11) -0.015(12) 0.032(14)C14B 0. 28(7) 0. 32(8) 0. 04(2) -0. 01(3) 0. 04(3) 0. 23(7)C15A 0. 11(2) 0. 080(19) 0. 054(14) 0. 023(13) 0. 029(13) 0. 056(17)C15B 0. 10(3) 0. 13(4) 0. 17(5) 0. 05(4) 0. 03(3) 0. 04(3)C16A 0.041(14) 0.15(3) 0.12(2) -0.07(2) -0.004(14) 0.051(17) C16B 0.16(4) 0.17(5) 0.14(4) -0.04(4) -0.04(3) 0.11(4)  $\begin{array}{c} \text{C17} & 0.12(2) & 0.060(16) & 0.062(15) & 0.000(13) & -0.007(14) & 0.042(17) \\ \text{C18} & 0.11(2) & 0.067(18) & 0.073(17) & -0.017(14) & -0.005(15) & 0.035(19) \\ \text{C19} & 0.076(18) & 0.10(2) & 0.09(2) & 0.028(18) & -0.003(15) & 0.045(18) \\ \text{C20} & 0.28(9) & 0.19(7) & 0.02(2) & 0.01(3) & 0.01(3) & 0.17(7) \end{array}$ 

\_geom\_special\_details

All esds (except the esd in the dihedral angle between two L.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving L.s. planes.

loop\_

\_geom\_bond\_atom\_site\_label\_1 \_geom\_bond\_atom\_site\_label\_2 \_geom\_bond\_distance \_geom\_bond\_site\_symmetry\_2 \_geom\_bond\_publ\_fl ag Pd1 C1 2.037(8) . ? Pd1 C9 2.039(8) . ? ? Pd1 Cl 1 2.304(4) . Pd1 Cl 2 2. 320(3) N1 Cl 1. 351(12) . N1 C2 1. 373(12) . N1 C4 1. 417(13) . ? N2 C1 1.358(11) N2 C3 1.403(12) N2 C5 1.441(13) N3 C9 1.334(11) N3 C10 1.391(11) . N3 C12 1.409(13) N4 C9 1.335(12) ? ? N4 C11 1.385(12) . N4 C13 1. 490(17) C2 C3 1. 329(16) C5 C6 1. 499(17) C6 C7 1. 47(3) ? C7 C8 1 42(3) ? Ż . ? ? . ? C7 C8 1.42(3) ? C10 C11 1.330(16) . ? C13 C14A 1.31(3). C13 C14B 1.40(5). ? ? ? C14A C15A 1.55(3). . ? C14B C15B 1.24(5) ?? C15A C16A 1.54(3). C15B C16B 1.53(5) . ? C17 C19 1.39(4) 2\_656 ? C17 C18 1.41(4) . ? C17 C18 1.32(4) . ? C18 C19 1.38(4) . ? C19 C17 1.39(4) 2\_656 ? C19 C20 1.71(7) . ? loop\_ \_geom\_angle\_atom\_site\_label\_1 \_geom\_angl e\_atom\_si te\_l abel \_2 \_geom\_angl e\_atom\_si te\_l abel \_3 \_geom\_angl e \_geom\_angle\_site\_symmetry\_1 \_geom\_angl e\_si te\_symmetry\_3 \_geom\_angl e\_publ \_fl ag C1 Pd1 C9 178.8(4) . . ? ? ? C1 Pd1 CI1 88.7(3) • C9 Pd1 Cl 1 90. 1(3) C1 Pd1 Cl 2 91. 1(3) ? . C9 Pd1 Cl 2 90.1(3) ? CI1 Pd1 CI2 179.72(12) ? C1 N1 C2 110.2(9) C1 N1 C4 124.2(8) C2 N1 C4 125.6(9) ??????? . . . . C1 N2 C3 108.3(9) • . C1 N2 C5 124.7(7) . C3 N2 C5 126.9(9)

| C9 N3 C10 110. $4(9)$ ?<br>C9 N3 C12 124. 7(8) ?<br>C10 N3 C12 124. 9(8) ?<br>C9 N4 C11 110. 2(9) ?<br>C9 N4 C13 125. 3(9) . ?<br>C11 N4 C13 124. 2(10) ?<br>N1 C1 N2 106. 4(7) ?<br>N1 C1 Pd1 127. 1(7) ?<br>N2 C1 Pd1 126. 5(7) ?<br>C2 C3 N2 107. 7(9) ?<br>N2 C5 C6 112. 5(10) ?<br>C7 C6 C5 114. 3(14) ?<br>C8 C7 C6 117(3) ?<br>N3 C9 Pd1 126. 8(7) ?<br>N4 C9 Pd1 127. 4(7) ?<br>N4 C9 Pd1 127. 4(7) ?<br>C10 C11 N4 107. 1(9) ?<br>C14A C13 C14B 121(3) ?<br>C14A C13 N4 119(2) ?<br>C13 C14A C15A 118(2) ?<br>C14B C13 N4 120(3) ?<br>C14B C15B C16B 105(4) ?<br>C19 C17 C18 118(3) 2_656 . ?<br>C19 C17 C19 C20 144(3) 2_656 . ?<br>C17 C19 C20 144(3) 2_656 . ? |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| _diffrn_measured_fraction_theta_ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | x 0.790  |
| _diffrn_reflns_theta_full 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.00     |
| _diffrn_measured_fraction_theta_fu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | II 0.957 |
| _refine_diff_density_max 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .115     |
| _refine_diff_density_min -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.120    |
| _refine_diff_density_rms 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .163     |

Cpd 6

