© CSIRO 2011

Australian Journal of Chemistry 2011, 64(5), 583-589

ACCESSORY PUBLICATION

Contrasting Reactivity of 2-Mesityl-1,8-Naphthyridine (Mes-NP) with Singly-Bonded [Rh^{II}–Rh^{II}] and [Ru^I–Ru^I] Compounds

Biswajit Saha, S. M. Wahidur Rahaman, Arup Sinha and Jitendra K. Bera*,

[†]Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.

* To whom correspondence should be addressed. E-mail: jbera@iitk.ac.in

Contents

Contents		
Scheme S1: Mechanism for oxidation of alcohol to aldehyde by 2 in presence of tempo	2	
General procedures for catalysis	3	
Table S1. Relevant Metrical Parameters of Compound 1	5	
Table S2: Relevant metrical parameters for Compound 2	7	

$$[Ru]$$
 $[Ru]$
 $[RuH_2]$
 $[RuH_2]$

 $[Ru] = [Ru(NP-Mes)_2(CH_3CN)_2](BF_4)_2$

Scheme S1: Oxidation of alcohol to aldehyde by catalyst 2 in presence of tempo.

Oxidation of alcohol to aldehyde: Catalyst 2 (0.01 mmol, 9 mg) was dissolved in 1 mL dichloroethane solution and 3 mL toluene was added to it. Then alcohol (1 mmol) and tempo (2 mmol, 292 mg) were added. The reaction mixture was heated to 80° C for 6 h. The progress of the reaction was monitored by GC. After the reaction was over, the resulting mixture was cooled to room temperature, then it was extracted with diethyl ether (3 × 20 mL). The ethereal solution was washed with brine (3 × 10 mL) and dried over MgSO₄ and filtered. After removing the solvent under vacuum, the product was purified by chromatography on a silica gel column using a mixture hexane/EtOAc as eluent.

Aldehyde-olefination reaction: 3 mL toluene solution of EDA (1.5 mmol, 0.14 mL) was added drop-wise to the mixture of triphenylphosphine (1.2 mmol, 314 mg), aldehyde (1 mmol) and catalyst **2** (0.01 mmol, 9 mg) in toluene and dichloroethane solution mixture over a period of 30 min under nitrogen atmosphere. Then the solution was heated for 6 h at 80°C. The progress of the reaction was monitored by GC. After the reaction was over, the resulting mixture was cooled to room temperature, then it was extracted with diethyl ether (3 × 20 mL). The ethereal solution was washed with brine (3 × 10 mL) and dried over MgSO₄ and filtered. After removing the solvent under vacuum, the product was purified by chromatography on a silica gel column using a mixture hexane/EtOAc as eluent.

One pot synthesis of α,β-unsaturated ester from alcohol: Catalyst 2 (0.02 mmol, 18 mg) was dissolved in 1 mL dichloroethane solution and the 3 mL toluene was added to it. Then alcohol (1 mmol) and tempo (2 mmol, 292 mg) were added. The reaction mixture was heated to 80°C for 6 h. After 6 h reaction mixture is cooled to room temperature and then triphenylphosphine (1.2 mmol, 314 mg) was directly added in the same reaction mixture and 3 mL toluene solution of

EDA (1.5 mmol, 0.14 mL) was added drop wise over it. Then the solution was heated for 6 h at 80° C. The progress of the reaction was monitored by GC. After the reaction was over, the resulting mixture was cooled to room temperature, then it was extracted with diethyl ether (3 × 20 mL). The ethereal solution was washed with brine (3 × 10 mL) and dried over MgSO₄ and filtered. After removing the solvent under vacuum, the product was purified by chromatography on a silica gel column using a mixture hexane/EtOAc as eluent.

Table S1. Selected Bond Lengths (Å) and Bond Angles (deg) and Dihedral Angles (deg) for ${\bf 1.}^a$

Bond Lengths (Å)			
Rh1-N1	2.001(3)	C12-C13	1.367(5)
Rh1-O2	2.016(2)	C12-C11	1.402(5)
Rh1-O1	2.028(2)	C19-C26	1.401(5)
Rh1-N2	2.044(3)	C19-C20	1.411(5)
Rh1-Rh1	2.3866(5)	C26-C25	1.395(5)
F3-B1	1.394(5)	C26-C27	1.514(5)
F4-B1	1.383(5)	C20-C22	1.391(5)
F2-B1	1.392(5)	C20-C21	1.502(5)
N1-C18	1.334(4)	C22-C23	1.396(5)
N1-C15	1.361(4)	C25-C23	1.383(5)
C14-C15	1.407(4)	C23-C24	1.509(5)
C14-C13	1.411(5)	O1-C1	1.277(4)
C14-C16	1.418(5)	F1-B1	1.395(5)
C18-C17	1.413(5)	C1-O2	1.276(4)
C18-C19	1.491(5)	C1-C2	1.496(5)
C16-C17	1.363(5)	O2-Rh1	2.016(2)
C15-N2	1.371(4)	Cl1-C1S	1.767(4)
N2-C11	1.325(5)	C1S-Cl1	1.767(4)
N2-Rh1	2.044(3)		
	Bond Angle	` ' '	
N1-Rh1-O2	88.31(10)	C12-C13-C14	119.4(3)
N1-Rh1-O1	92.78(10)	N2-C11-C12	123.2(3)
O2-Rh1-O1	176.22(9)	C26-C19-C20	120.6(3)
N1-Rh1-N2	177.81(11)	C26-C19-C18	120.1(3)
O2-Rh1-N2	90.45(10)	C20-C19-C18	119.3(3)
O1-Rh1-N2	88.34(10)	C25-C26-C19	118.7(3)
N1-Rh1-Rh1	88.99(8)	C25-C26-C27	119.4(3)
O2-Rh1-Rh1	88.61(7)	C19-C26-C27	121.9(3)
O1-Rh1-Rh1	87.79(7)	C22-C20-C19	118.1(3)
N2-Rh1-Rh1	89.17(8)	C22-C20-C21	119.7(3)
C18-N1-C15	120.4(3)	C19-C20-C21	122.2(3)
C18-N1-Rh1	115.6(2)	C20-C22-C23	122.2(4)
C15-N1-Rh1	123.9(2)	C23-C25-C26	121.9(3)
C15-C14-C13	117.6(3)	C25-C23-C22	118.2(4)
C15-C14-C16	117.7(3)	C25-C23-C24	120.5(4)
C13-C14- C16	124.6(3)	C22-C23-C24	121.2(4)

N1-C18-C17	121.3(3)	C1-O1-Rh1	119.6(2)
N1-C18-C19	113.6(3)	F4-B1-F2	109.8(3)
C17-C18-C19	125.2(3)	F4-B1-F3	109.8(3)
C17-C16-C14	120.0(3)	F2-B1-F3	109.1(4)
N1-C15-N2	116.4(3)	F4-B1-F1	109.6(4)
N1-C15-C14	121.2(3)	F2-B1-F1	109.3(3)
N2-C15-C14	122.4(3)	F3-B1-F1	109.2(3)
C16-C17-C18	119.3(3)	O2-C1-O1	124.6(3)
C11-N2-C15	117.9(3)	O2-C1-C2	118.4(3)
C11-N2-Rh1	120.8(2)	O1-C1-C2	117.0(3)
C15-N2-Rh1	121.3(2)	C1-O2-Rh1	119.4(2)
C13-C12-C11	119.2(3)	Cl1-C1S-Cl1	111.3(4)
Dihedral Angles (deg)			
Ru1-N1-C15-N2	2.4(3)	Ru1-N2-C18-C19	7.3(7)
N3-Ru1-N2-C18	88.3(5)		
7 ~ .			

^a Symmetry transformation used to generate equivalent atoms: 1/2-X, 3/2-Y, 2-Z.

Table S2. Selected Bond Lengths (Å) and Bond Angles (deg) and Dihedral Angles (deg) for **2**. a

Bond Lengths (Å)			
Ru1-N3	2.018(3)	C15-C14	1.388(5)
Ru1-N3	2.018(3)	C21-C22	1.386(6)
Ru1-N2	2.086(3)	C14-C13	1.408(5)
Ru1-N2	2.086(3)	C14-C16	1.415(6)
Ru1-N1	2.100(3)	C11-C12	1.406(6)
Ru1-N1	2.100(3)	C18-C17	1.421(5)
N2-C18	1.319(5)	C23-C22	1.400(6)
N2-C15	1.362(4)	C12-C13	1.369(6)
N1-C11	1.322(5)	C16-C17	1.372(5)
N1-C15	1.358(5)	C22-C27	1.505(5)
C24-C23	1.389(5)	C1-C2	1.454(6)
C24-C19	1.411(5)	Cl1S-C1S	1.739(5)
C24-C25	1.507(5)	C1S-Cl1S	1.739(5)
C19-C20	1.397(5)	F1-B1	1.367(6)
C19-C18	1.494(5)	F3-B1	1.364(6)
N3-C1	1.128(5)	F4-B1	1.364(6)
C20-C21	1.392(5)	F2-B1	1.355(5)
C20-C26	1.514(6)		
	Bond Ang	gles (deg)	
N3-Ru1-N3	180.0(2)	C21-C20-C26	120.1(4)
N3-Ru1-N2	88.48(12)	C19-C20-C26	121.6(4)
N3-Ru1-N2	91.52(12)	N1-C15-N2	108.3(3)
N3-Ru1-N2	91.52(12)	N1-C15-C14	125.7(3)
N3-Ru1-N2	88.48(12)	N2-C15-C14	125.9(3)
N2-Ru1-N2	180.00(12)	C22-C21-C20	122.1(4)
N3-Ru1-N1	90.75(12)	C15-C14-C13	115.6(4)
N3-Ru1-N1	89.25(12)	C15-C14-C16	114.9(3)
N2-Ru1-N1	63.58(12)	C13-C14-C16	129.4(4)
N2-Ru1-N1	116.42(12)	N1-C11-C12	121.0(4)
N3-Ru1-N1	89.25(12)	N2-C18-C17	120.1(3)
N3-Ru1-N1	90.75(12)	N2-C18-C19	116.3(3)

N2-Ru1-N1	116.42(12)	C17-C18-C19	123.5(3)
N2-Ru1-N1	63.58(12)	C24-C23-C22	121.4(4)
N1-Ru1-N1	180.0(3)	C13-C12-C11	121.1(4)
C18-N2-C15	118.3(3)	C17-C16-C14	119.6(4)
C18-N2-Ru1	147.4(3)	C21-C22-C23	118.6(4)
C15-N2-Ru1	94.2(2)	C21-C22-C27	121.1(4)
C11-N1-C15	117.5(3)	C23-C22-C27	120.3(4)
C11-N1-Ru1	148.7(3)	C12-C13-C14	119.0(4)
C15-N1-Ru1	93.8(2)	C16-C17-C18	121.0(4)
C23-C24-C19	118.4(3)	N3-C1-C2	178.7(5)
C23-C24-C25	120.1(3)	Cl-1S-C1S-Cl1S	114.1(5)
C19-C24-C25	121.5(3)	F2-B1-F3	111.0(5)
C20-C19-C24	121.2(3)	F2-B1-F4	112.0(4)
C20-C19-C18	118.8(3)	F3-B1-F4	108.8(4)
C24-C19-C18	120.0(3)	F2-B1-F1	107.7(4)
C1-N3-Ru1	179.1(3)	F3-B1-F1	107.6(4)
C21-C20-C19	118.3(4)	F4-B1-F1	109.7(4)
Dihedral Angles (deg)			
Rh1-N1-C15-N2	4.8(4)	Rh1-O2-C1-O1	1.7(3)
Rh1-N1-C18-C19	6.9(3)	Rh1-O2-C1-C2	179.1(3)
0 ~			

^a Symmetry transformation used to generate equivalent atoms: 1/2-X,1/2-y,-z.