Accessory Publication Synthesis of self assembling cyclic peptide-polymer conjugates using click chemistry

Robert Chapman*, Katrina A. Jolliffe, Sébastien Perrier
*Key Centre for Polymers \& Colloids, School of Chemistry, University of Sydney, NSW2006, Australia. Email: r.chapman@chem.usyd.edu.au; Fax +61 (2) 9351 3329; Tel: +61 (2) 93513366

Materials: Fmoc-L-Lysine, Fmoc-d-Leucine, 1-hydroxy-l-azabenzotriazoleuronium (HBTU) and O-benzotriazole-1-yl- $N, N, N N^{\prime}, N^{\prime}$-tetramethyluronium hexafluorophosphate (HOBt) were obtained from Novabiochem and used as supplied. Butyltrithiocarbonate propanoic acid (BTCPA), was obtained from Dulux, and used as supplied and azo-iso-butyronitrile (AIBN) was obtained from Aldrich, and precipitated from methanol prior to use. Hünig's base [di(isopropyl)ethylamine, DIPEA], trifluoroacetic acid (TFA), trifluoroethanol (TFE), 2,2, pentamethyldiethylenetriamine (PMDETA), sulphuryl chloride, and all solvents were ordered through Sigma-Aldrich and used as received. CuBr , used in the click reactions, was obtained from Aldrich and purified by suspending it in acetic acid (6 g in 50 ml) for $20 \mathrm{~min} .{ }^{[1]}$ Pure CuBr was filtered off, washed with cold EtOH (100%, 2 x 20 ml), dried under vacuum and stored under nitrogen. The monomer, hydroxyl ethyl acrylate (HEA) was purified as described in literature. ${ }^{[2]}$

Azido Fmoc-L-Lysine (1): Azido Fmoc-L-Lysine was using Stick's diazo transfer agent, ${ }^{[3]}$ using a method adapted from his procedure for similar compounds. Sulfuryl chloride ($8.05 \mathrm{ml}, 100 \mathrm{mmol}$) was added dropwise to an ice cold suspension of sodium azide $(6.50 \mathrm{~g}, 100 \mathrm{mml})$ in acetonitrile $(100 \mathrm{ml})$ and stirred overnight at room temperature. The mixture was then recooled to $0^{\circ} \mathrm{C}$ and imidazole $(12.95 \mathrm{~g}, 190$ mmol) was added over 20 min . After stirring for a further 3 h at room temperature, the solution was diluted with EtOAc (200 ml), washed with water ($2 \times 200 \mathrm{ml}$) and
saturated $\mathrm{NaHCO}_{3}(\mathrm{aq})(2 \times 200 \mathrm{ml})$, and then dried over MgSO_{4}. A solution of HCl in ethanol was generated by dropwise addition of $\mathrm{AcCl}(10.65 \mathrm{~g}, 150 \mathrm{mmol})$ to EtOH $(37.5 \mathrm{ml})$, and this was added dropwise to the dried EtOAc solution to generate the HCl salt of the product. After cooling in an ice bath, the colourless needles were collected by filtration and washed with EtOAc ($3 \times 50 \mathrm{ml}$) yielding imidazole-1sulfonyl azide hydrochloride ($6.92 \mathrm{~g}, 33 \mathrm{mmol}, 33 \%$). m.p. $102-104^{\circ} \mathrm{C}$ (lit $100-$ $102^{\circ} \mathrm{C}$), ${ }^{[3]} \mathrm{IR} v_{\text {max }} .(\mathrm{KBr}) 2173,1429 \& 1162 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta \mathrm{ppm}$: 7.47 (m, 1H), $7.89(\mathrm{~m}, 1 \mathrm{H}), 8.95-9.15(\mathrm{~m}, 1 \mathrm{H})$.

Fmoc-L-Lysine-OH ($5.50 \mathrm{~g}, 14.93 \mathrm{mmol}$) was ground, dissolved in water (15 ml) with 1 equivalent of HCl , and diluted with a water / methanol mixture ($1: 2,65 \mathrm{ml}$). Imidazole-1-sulfonyl azide hydrochloride ($3.75 \mathrm{~g}, 17.9 \mathrm{mmol}$), $\mathrm{NaHCO}_{3}(8.11 \mathrm{~g}, 96.54$ $\mathrm{mmol})$ and $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(37.3 \mathrm{mg}, 0.149 \mathrm{mmol})$ in water (1 ml) were added and the mixture stirred for 16 h at room temperature. After completion of the reaction, the mixture was concentrated to 50 ml then diluted with more water (150 ml), and acidified to pH 2 by dropwise addition of 5 M HCl (aq). The aqueous phase was extracted with EtOAc ($3 \times 50 \mathrm{ml}$), dried over MgSO_{4}, and purified over a silica column (Toluene / EtOAc / Acetic acid 85:10:5). Concentration of the appropriate fractions gave azido Fmoc-L-lysine $\mathbf{1}$ as a white powder ($3.83 \mathrm{~g}, 9.72 \mathrm{mmol}, 72 \%$). IR $v_{\text {max }}$. (ATR) $\mathrm{cm}^{-1}: 2096\left(\mathrm{~N}_{3}\right), 1714(\mathrm{C}=\mathrm{O}),{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 1.10-$ $2.05\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 3.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}_{3}-\mathrm{CH}_{2}\right), 4.16(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$, Fmoc CH$)$, 4.30-4.55 (m, 3H, α-H \& Fmoc O-CH2), 5.18 (d, J= $8.0 \mathrm{~Hz}, \mathrm{~N}-\mathrm{H}$), 7.10-7.40 (4H, 4 x Fmoc CH), 7.52 (d, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc CH), $7.70(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc CH). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 175.8(\mathrm{COOH}), 156.1(\mathrm{CONH}), 143.8,143.6$, and 141.3 (fluorenyl C-4a, C-4b, C-8a, and C-9a), 127.8, 127.1, and 125.0 (fluorenyl C-2 to C-7), 120.0 (fluorenyl C-1 and C-8), 67.1 (CH2-O), 53.4 (C- α), 51.1 (C- ε), 47.2 (fluorenyl C-9), $31.8\left(\mathrm{CH}_{2}\right)$, $28.4\left(\mathrm{CH}_{2}\right), 22.4\left(\mathrm{CH}_{2}\right)$. Data are in good agreement with literature values. ${ }^{[4]}$

Synthesis of $\mathbf{H}_{\mathbf{2}} \mathbf{N}$-(L-Lys($\mathbf{N}_{\mathbf{3}}$)-D-Leu) $\mathbf{4}$ - $\mathbf{O H}$ (2): 2-Chlorotrityl chloride resin (1.0 g, $1.01 \mathrm{mmol} / \mathrm{g})$ was suspended in $\mathrm{DCM}(10 \mathrm{ml})$ in a fritted syringe and shaken for 5 min. After the DCM was filtered off, a solution of Fmoc-D-Leucine-OH (2.02 mmol , 0.71 g) and DIPEA ($8.1 \mathrm{mmol}, 1.04 \mathrm{~g}$) in DCM (10 ml) was added to the resin, and the suspension was shaken for 2 h . The resin was then washed with 17:2:1 solution of

DCM:MeOH:DIPEA ($3 \times 10 \mathrm{ml}$) to cap any unreacted sites, and then with DCM (3 x 10 ml), DMF ($3 \times 10 \mathrm{ml}$), and DCM ($3 \times 10 \mathrm{ml}$). The resin was dried under vacuum and used for further solid phase peptide synthesis. Loading was calculated to be ~ 0.96 $\mathrm{mmol} / \mathrm{g}$ original resin by UV-Vis spectroscopy. ${ }^{[5]}$

The dried resin $(0.20 \mathrm{~g})$ was swollen with DCM in a 2 ml fritted syringe by shaking for 30 min . The DCM was removed, and the chain was deprotected by the addition of 20% piperidine in DMF for 3 min (x 2) and then washed with DMF (x5), DCM (x3) and DMF (x2) to remove any piperidine. For a lysine addition, Fmoc-L-Lys $\left(\mathrm{N}_{3}\right)$-OH $(0.175 \mathrm{~g}, 0.287 \mathrm{mmol})$, HBTU $(0.143 \mathrm{~g}, 0.383 \mathrm{mmol})$, and DIPEA $(0.158 \mathrm{~g}, 0.958$ mmol) in DMF were drawn into the syringe and the mixture was shaken overnight. For a leucine addition, Fmoc-D-Leu-OH ($0.203 \mathrm{~g}, 0.575 \mathrm{mmol}$), HBTU (0.218 g , $0.575 \mathrm{mmol})$ and DIPEA ($0.190 \mathrm{~g}, 1.149 \mathrm{mmol}$) were drawn into the syringe and the reaction was shaken for 3 h . After reaction, the resin was washed with DMF (x5) then the deprotection step was repeated and the next amino acid added. After addition and deprotection of the last amino acid, the chain was cleaved from the resin by addition of a cocktail of TFA / thioanisole / triisopropylsilane / water (88:5:2:5), which was allowed to react for 3 h . The resin was then filtered off, and the solution concentrated to near dryness under reduced pressure, redissolved in a small amount of MeOH and precipitated by the addition of ice cold diethyl ether to yield the linear peptide $\mathbf{2}$ as a white powder ($0.16 \mathrm{~g}, 75 \%$). ${ }^{1} \mathrm{H}$-NMR ($300 \mathrm{MHz}, d$-TFA) $\delta \mathrm{ppm}: 0.95$ (br, $24 \mathrm{H}, 8$ Leu CH_{3}), 1.35-2.20 (m, 36H, 12 Lys $\mathrm{CH}_{2} \& 4$ Leu CH \& $4 \mathrm{Leu} \mathrm{CH}_{2}$), 3.35 (br, $8 \mathrm{H}, 4$ $\mathrm{N}_{3}-\mathrm{CH}_{2}$), 4.24-4.40 (m, 1H, $1 \alpha-\mathrm{CH}$), 4.53-4.96 (m, 7H, $7 \alpha-\mathrm{CH}$). m / z (ESI) 1087.87 $\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, calc $\left.=1087.70\right)$.

Synthesis of (prop-2-ynyl propanoate)yl butyltrithiocarbonate (PPBTC, 4): PPBTC was prepared according to previous work in our group. ${ }^{[6]}$ Butyltrithiocarbonate propanoic acid (BTCPA) $(1.03 \mathrm{~g}, 4.30 \mathrm{mmol})$ was dissolved in DCM $(50 \mathrm{ml})$ and cooled in an ice bath. To this was added propargyl alcohol $(1.21 \mathrm{~g}, 21.51$ mmol), 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (EDCI, 1.65 $\mathrm{g}, 8.61 \mathrm{mmol}$) and N, N-dimethylaminopyridine (DMAP, $0.54 \mathrm{~g}, 4.42 \mathrm{mmol}$). After reaction for 2 h at $0^{\circ} \mathrm{C}$ and then for 16 h at room temperature, the excess reagents were removed by washing with water ($5 \times 20 \mathrm{ml}$). The organic fraction was dried over MgSO_{4}, concentrated, and passed over a silica pad with Toluene / EtOAc (9:1). The
solvent was evaporated to yield the product $\mathbf{4}$ as a yellow oil $(1.08 \mathrm{~g}, 3.09 \mathrm{mmol}$, 72%). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 0.86(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.36$ (sext., $J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.49-1.72(\mathrm{~m}, 5 \mathrm{H}), 2.42(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{t}, 2 \mathrm{H}), 4.66(\mathrm{~d}, J=10.8$ $\mathrm{Hz}, 2 \mathrm{H}), 4.78(\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$.

Polymerisations: The RAFT agent 4, AIBN and HEA (20:1:0.1 for the short polymer, and 100:1:0.1 for the long polymer) were mixed with 70% (wt/wt) of t butanol in a schlenk tube and sonicated for 1 min to aid dissolution. $4-6$ freeze pump thaw cycles were used to degass the samples and polymerisations were conducted at $60^{\circ} \mathrm{C}$ in a silicon oil bath, under N_{2} at 1 atm . After reaction, a sample of the crude was retained for determination of conversion by ${ }^{1} \mathrm{H}-\mathrm{NMR}$, and the remainder was purified by precipitation and subsequent washing from ice-cold diethyl ether. Molecular weights and polydispersities were determined by SEC (DMF, $0.3 \% \mathrm{LiBr}, 60^{\circ} \mathrm{C}$) taking DMSO as a flowrate marker, using a DRI detector and by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($d 6-$ DMSO).

Table S1: Polymer characterisation data

Polymer	$[\mathbf{M}]:[\text { RAFT }]^{\mathrm{a}}$	Conversion (\mathbf{X})	$\mathbf{M}_{\mathbf{n}}{ }^{\mathrm{b,c}}$ $(\mathbf{S E C})$	$\mathbf{M}_{\mathbf{n}}{ }^{\mathrm{b}, \mathrm{d}}$ ${ }^{\mathbf{1} \mathbf{H}-}$ $\mathbf{N M R})$	Degree of Polymerisation	PDI
Short	$20: 1$	60%	2760	1698	12	1.10
Long	$100: 1$	35%	4700	3965	30	1.13

Notes: (a) $[\mathrm{M}]=[$ Monomer $]$, (b) M_{n} displayed as $\mathrm{g} \cdot \mathrm{mol}^{-1}$, (c) SEC molecular weights relative to Styrene standards. No correction for the molecular weights of HEA was used, (d) ${ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{M}_{\mathrm{n}}$ calculated by integration of the RAFT relative to the monomer peaks

Figure S1: Example of a ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(d 6-\mathrm{DMSO}\right.$ with $\left.\mathrm{D}_{2} \mathrm{O}\right)$ used to determine the conversion from the conjugation of the DP12 pHEA to the 4 arom cyclic peptide

References:

[1] M. Georges, M. Michaël, T. Philippe, J. Robert, Macromol. Chem. Phys. 2000, 201(11), 1108-14.
[2] E. Vargun, A. Usanmaz, J. Polym. Sci., Part A: Polym. Chem. 2005, 43(17), 3957-65.
[3] E. D. Goddard-Borger, R. V. Stick, Org. Lett. 2007, 9(19), 3797-800.
[4] A. L. Isaad, F. Barbetti, P. Rovero, A. M. D'Ursi, M. Chelli, M. Chorev, A. M. Papini, Eur. J. Org. Chem. 2008, (31), 5308-14.
[5] P. Forns, G. B. Fields, The Solid Support. In Solid Phase Peptide Synthesis: A Practical Guide; S. A. Kates, F. Albericio, Eds. New York: Marcel Dekker Inc; 2000, p. 1-77.
[6] D. Konkolewicz, A. Gray-Weale, S. b. Perrier, J. Am. Chem. Soc. 2009, 131(50), 18075-7.

