Theoretical Design Study on Photophysical Properties of Light-emitting Pyrido[3,4-b]pyrazine-based Oligomers
Yanling Wang A , Qiang Peng A B C , Ping He A , Zaifang Li A , Ying Liang A and Benlin Li AA College of Chemical Engineering and Food Science, Xiangfan University, Xiangfan 441053, PR China.
B College of Chemistry, Sichuan University, Chengdu 610064, PR China.
C Corresponding author. Email: qiangpengjohnny@yahoo.com
Australian Journal of Chemistry 65(2) 169-185 https://doi.org/10.1071/CH11427
Submitted: 8 November 2011 Accepted: 2 January 2012 Published: 21 February 2012
Abstract
The electronic structures, charge injection and transport, and absorption and emission properties of four series of dimethylpyrido[3,4-b]pyrazine-based oligomers (5-(5,5-dimethyl-5H-dibenzo[b,d]silol-3-yl)-2,3-dimethylpyrido[3,4-b]pyrazine)n (SPP)n, (5-(dibenzo[b,d]thiophen-3-yl)-2,3-dimethylpyrido[3,4-b]pyrazine)n (TPP)n, (5-(9,9-dimethyl-9H-fluoren-2-yl)-2,3-dimethylpyrido[3,4-b]pyrazine)n (FPP)n, (2-(2,3-dimethylpyrido[3,4-b]pyrazin-5-yl)-9-methyl-9H-carbazole)n (PPC)n were investigated by the density functional theory approach. The ground-state geometries of (SPP)n, (TPP)n, (FPP)n and (PPC)n (n = 1–4) were optimized at the B3LYP/6–31G(d) level. The energies of the HOMO, LUMO and HOMO–LUMO energy gaps of (SPP)n, (TPP)n, (FPP)n and (PPC)n (n = 1–4) were obtained by a linear extrapolation method. Further, calculations of ionization potential, electronic affinity and reorganization energy were used to evaluate charge injection and transport abilities. For (SPP)n, (TPP)n, (FPP)n and (PPC)n (n = 1–4), the time-dependent density functional theory (TDDFT) calculation results revealed that the absorption peaks can be characterized as π–π* transitions and are coupled with the location of electron density distribution change in different repeat units. All the primary theoretical investigations are intended to establish structure–property relationships, which can provide guidance in designing and preparing novel efficient organic light-emitting materials with a high performance.
References
[1] A. Ajayaghosh, Chem. Soc. Rev. 2003, 32, 181.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkt1emt7k%3D&md5=c5d5665a339aec0c7f62456d29ff073cCAS |
[2] Q. Peng, J. B. Peng, E. T. Kang, K. G. Neoh, Y. Cao, Macromolecules 2005, 38, 7292.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVymtL4%3D&md5=a15ce7f907d772c052034b38e3608fadCAS |
[3] A. Haldi, A. Kimyonok, B. Domercq, L. E. Hayden, S. C. Jones, S. R. Marder, M. Weck, B. Kippelen, Adv. Funct. Mater. 2008, 18, 3056.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWnt7bM&md5=d915bab2402528fa0c50a33fea69b917CAS |
[4] J. C. Bijleveld, A. P. Zoombelt, S. G. J. Mathijssen, M. M. Wienk, M. Turbiez, D. M. de Leeuw, R. A. Janssen, J. Am. Chem. Soc. 2009, 131, 16616.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlGjsbfJ&md5=1d3bd7cc5be9e554f7fcb9b788bbef47CAS |
[5] Q. Peng, X. J. Liu, D. Su, G. W. Fu, J. Xu, L. M. Dai, Adv. Mater. 2011, 23, 4554.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFers7jM&md5=2fa3ebb8f99360b74e4b03d203e13446CAS |
[6] J. H. Tsai, C. C. Chueh, M. H. Wang, C. F. Lai, W. C. Chen, B. T. Ko, C. Ting, Macromolecules 2009, 42, 1897.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitFKjt7k%3D&md5=a8d43928753a3d03fac4c2864fd43b4fCAS |
[7] J. H. Tsai, W. Y. Lee, W. C. Chen, C. Y. Yu, G. W. Hwang, C. Ting, Chem. Mater. 2010, 22, 3290.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFyksbc%3D&md5=8b81ebfcee8de751b355a4f322a50c5eCAS |
[8] J. H. Tsai, C. C. Chueh, W. C. Chen, C. Y. Yu, G. W. Hwang, C. Ting, E. C. Chen, H. F. Meng, J. Polym. Sci. A Polym. Chem. 2010, 48, 2351.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVKms70%3D&md5=3160a567f9c46f621147383f16da4b0dCAS |
[9] Q. Peng, J. Xu, M. J. Li, W. X. Zheng, Macromolecules 2009, 42, 5478.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsFWqtbY%3D&md5=492a31ea6bf1ca249bf2ef35ec0afdc3CAS |
[10] F. C. Tsai, C. C. Chang, C. L. Liu, W. C. Chen, S. A. Jenekhe, Macromolecules 2005, 38, 1958.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFentLc%3D&md5=666eae786577ed06fcc26745c7903749CAS |
[11] C. C. Liu, F. C. Tsai, C. C. Chang, K. H. Hsieh, J. J. Lin, W. C. Chen, Polymer 2005, 46, 4950.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1agsLo%3D&md5=0f7ec884b1fec15b24eaad0915dab30dCAS |
[12] R. Q. Yang, R. Y. Tian, W. Yang, Y. Cao, Macromolecules 2003, 36, 7453.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltVGmsr4%3D&md5=c265c1330f341b35b190da030b85660cCAS |
[13] K. T. Wong, C. F. Wang, C. H. Chou, Y. O. Su, Org. Lett. 2002, 4, 4439.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosFWgsr8%3D&md5=3a7e131f38daf4a1a7c3a4e5ce9d6675CAS |
[14] J. M. Hancock, A. P. Gifford, R. D. Champion, S. A. Jenekhe, Macromolecules 2008, 41, 3588.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsVKmtL4%3D&md5=936979063ddc25877c5b0d094e9e3a66CAS |
[15] A. P. Kulkarni, Y. Zhu, S. A. Jenekhe, Macromolecules 2005, 38, 1553.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXovFWntw%3D%3D&md5=7e654e5870c8317b85124dc319e6f9c9CAS |
[16] Q. Peng, J. Xu, W. X. Zheng, J. Polym. Sci. A Polym. Chem. 2009, 47, 3399.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1ajur4%3D&md5=6d9e0fc3bfb384a322a61d6c00e962b3CAS |
[17] M. Svensson, F. Zhang, S. C. Veenstra, W. J. H. Verhees, J. C. Hummelen, J. M. Kroon, O. Inganäs, M. R. Andersson, Adv. Mater. 2003, 15, 988.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlemtLk%3D&md5=2cb2b6ea07f74f4e8ee3fa260a9d0761CAS |
[18] T. Yamamoto, H. Kokubo, M. Kobashi, Y. Sakai, Chem. Mater. 2004, 16, 4616.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktVKlsLY%3D&md5=51ec401802da1cc3ca883abf4bac2892CAS |
[19] T. Yamamoto, T. Yasuda, Y. Sakai, S. Aramaki, Macromol. Rapid Commun. 2005, 26, 1214.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXoslGgs7c%3D&md5=d11294db4116dd93ec3bae4c79fdd8f7CAS |
[20] T. Yasuda, Y. Sakai, S. Aramaki, T. Yamamoto, Chem. Mater. 2005, 17, 6060.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKhtbnN&md5=5b594d13dcee17172a13852ba34c43d3CAS |
[21] G. Sonmez, C. K. F. Shen, Y. Rubin, F. Wudl, Adv. Mater. 2005, 17, 897.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFWiur4%3D&md5=194a844c07d1446d0cb119899fa618e4CAS |
[22] Q. Peng, X. J. Liu, Y. C. Qin, D. Zhou, J. Xu, J. Polym. Sci. A Polym. Chem. 2011, 49, 4458.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXps1eltbo%3D&md5=06adb0d06a66a13cb9f989df9e5694fdCAS |
[23] M. Chen, X. Crispin, E. Perzon, M. R. Andersson, T. Pullerits, M. Andersson, O. Inganäs, M. Berggren, Appl. Phys. Lett. 2005, 87, 252105.
| Crossref | GoogleScholarGoogle Scholar |
[24] Q. Peng, X. J. Liu, Y. C. Qin, M. J. Li, J. Xu, G. W. Fu, L. M. Dai, J. Mater. Chem. 2011, 21, 7714.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtFent74%3D&md5=269eebdc3f85b6b81a35abcc3a15fc1aCAS |
[25] B. C. Thompson, L. G. Madrigal, M. R. Pinto, T. S. Kang, K. S. Schanze, J. R. Reynolds, J. Polym. Sci. Part A Polym. Chem. 2005, 43, 1417.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVOmur0%3D&md5=acdfdecf760ae102ad77f65cc34f22d1CAS |
[26] F. Zhang, M. Jonforsen, D. M. Johansson, M. R. Andersson, O. Inganäs, Synth. Met. 2003, 138, 555.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1aru7w%3D&md5=f9557578e4180edaa6bf15d05ac879eeCAS |
[27] W. Horst, S. Susanne, J. Stefan, V. U. Alexander, H. E. M. Axel, Macromolecules 2003, 36, 3374.
| Crossref | GoogleScholarGoogle Scholar |
[28] T. Yamamoto, Y. Fujiwara, H. Fukumoto, Y. Nakamura, S. Koshihara, T. Ishikawa, Polymer 2003, 44, 4487.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltFOmurk%3D&md5=81f5bf8fd6aaf8c29683138e59ad3746CAS |
[29] Y. L. Wang, Q. Peng, Y. Liang, B. L. Li, W. G. Zhu, Aust. J. Chem. 2011, 64, 180.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvFWhsrk%3D&md5=dd59efab852521d8f110ec84e0bc099fCAS |
[30] Y. L. Wang, Q. Peng, Q. F. Hou, K. Zhao, Y. Liang, B. L. Li, Theor. Chem. Acc. 2011, 29, 257.
| Crossref | GoogleScholarGoogle Scholar |
[31] L. M. Liu, X. Y. Wang, Y. L. Wang, X. Y. Peng, Y. X. Mo, J. Polym. Sci., B, Polym. Phys. 2009, 47, 706.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvFahsL0%3D&md5=a540020e4fa2813d3e8d40d61e9fbb98CAS |
[32] A. D. Becke, Phys. Rev. A 1988, 38, 3098.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlOhsLo%3D&md5=4e325aafa58d58509cc76a9081d284e4CAS |
[33] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=ebe7dc68a8c38908388e1cd8680e671cCAS |
[34] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=1db8a301b13c0d54e6e18228104ee4b7CAS |
[35] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, GAUSSIAN 09, Revision A.02, 2009 (Gaussian, Inc.: Wallingford CT).
[36] H. Cao, J. Ma, G. L. Zhang, Y. S. Jiang, Macromolecules 2005, 38, 1123.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFWjug%3D%3D&md5=e77a388c8f132bdb9b57dfc3eb00257cCAS |
[37] X. Zhou, A. M. Ren, J. K. Feng, Polymer 2004, 22, 7747.
| Crossref | GoogleScholarGoogle Scholar |
[38] E. Runge, E. K. U. Gross, Phys. Rev. Lett. 1984, 52, 997.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhsVGit78%3D&md5=d2bb714c68144b4efa0e06a18a736328CAS |
[39] T. M. Clarke, K. C. Gordon, D. L. Office, S. B. Hall, G. E. Collis, A. K. Burrell, J. Phys. Chem. A 2003, 107, 11505.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptlOltrs%3D&md5=3e5f77bc7c1ec6c8638cc1deb3ee8c53CAS |
[40] P. T. Wu, F. S. Kim, R. D. Champion, S. A. Jenekhe, Macromolecules 2008, 41, 7021.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFSmtrbK&md5=42cf3b98dfa95117e5cfa6f22644c84dCAS |
[41] V. Coropceanu, N. E. Gruhn, S. Barlow, C. Lambert, J. C. Durivage, T. G. Bill, G. Nöll, S. R. Marder, J. L. Brédas, J. Am. Chem. Soc. 2004, 126, 2727.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVars7Y%3D&md5=701117211aef9fca467b506dbc1367dfCAS |
[42] R. A. Marcus, N. Sutinm, Biochim. Biophys. Acta 1985, 811, 265.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXltFygs78%3D&md5=f61543f08eb2de7738179f6072924728CAS |
[43] L. Yang, J. K. Feng, A. M. Ren, J. Z. Sun, Polymer 2006, 47, 1397.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Gjt7Y%3D&md5=5ac10f397c3b0917a64a0541187f1478CAS |
[44] D. M. de Leeuw, M. M. J. Simenon, A. R. Brown, R. E. F. Einerhand, Synth. Met. 1997, 87, 53.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtl2gu74%3D&md5=7f4e7a49b2957c90c15b6a112f415c2aCAS |
[45] S. F. Nelsen, F. Blomgren, J. Org. Chem. 2001, 66, 6551.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmt1Oksr0%3D&md5=c69016c9feacacd16887227d6e865c63CAS |