6th Heron Island Conference on Reactive Intermediates and Unusual Molecules
Curt Wentrup and Craig WilliamsSchool of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane Qld 4072, Australia. Email: wentrup@uq.edu.au; c.williams3@uq.edu.au
Curt Wentrup, Ph.D., D.Sc., FAA (left), is Professor Emeritus at the University of Queensland and Editor-in-Chief of the Australian Journal of Chemistry. His research lies in the field of reactive intermediates and unusual molecules using photochemistry, flash vacuum thermolysis, matrix isolation, and computational chemistry. He is a recipient of the 2003 Centenary Medal of the Australian Commonwealth for research in organic and physical chemistry and the 2014 David Craig Medal of the Australian Academy of Science. He also became a JSPS Fellow in 2014. |
Australian Journal of Chemistry 67(3) 317-319 https://doi.org/10.1071/CH14041
Published: 13 March 2014
The 6th Heron Island Conference on Reactive Intermediates and Unusual Molecules – Synthesis and Mechanism was held at the Heron Island Resort on the Great Barrier Reef, 7–13 July 2013, with some 80 scientists in attendance from all over the world, presenting highlights of their work in lecture and poster format (Fig. 1). These meetings, which enjoy an excellent international reputation, present unique opportunities for interaction between Australian and overseas chemists in subject areas varying from organic synthesis to reaction mechanism, computational and theoretical chemistry, physical/materials chemistry, inorganic chemistry, biological/medicinal chemistry, and spectroscopy.
This issue of Aust. J. Chem. presents a collection of papers authored by delegates at the meeting and comprise a wide range of topics, including amine boranes (S.-Y. Liu et al.),[1] rhodium carbenoids (A. Padwa et al.),[2] singlet oxygen (T. Linker et al.),[3] hydrogen peroxide fuel cells (S. Fukuzumi et al.),[4] pyridine-palladacycles (G. J. Rowlands et al.),[5] benzonitrile oxide cycloadditions (G. P. Savage and C. Francis),[6] adamantanethione reactions (N. Drinnan and C. Wentrup),[7] dye-sensitised solar cells (E. Brunet et al.),[8] iron complexes (P. Comba et al.),[9] boric acid catalysed esterification (T. A. Houston et al.),[10] amidinium tetrazolide (A. J. Arduengo et al.),[11] use of Otera’s catalyst (C. A. Hutton et al.),[12] methyltriacetylene cation (J. P. Maier et al.),[13] retro-Mannich cascade rearrangement (P. Wipf et al.),[14] computations on water dimers (E. Kraka et al.),[15] cyclopropane radical cation (W. Zou and D. Cremer),[16] nitrile selenides (T. Pasinszki et al.),[17] polarization in a halogen bond (T. Clark et al.),[18] triazenes (S. Bräse et al.),[19] sydnone photochemistry (C. Wentrup et al.),[20] dihydroazulene photoswitches (M. B. Nielsen et al.),[21] isocyanide-NHC-platinum(ii) complexes (A. S. K. Hashmi et al.),[22] benzynes (T. Ikawa et al.),[23] gold catalysis (A. S. K. Hashmi et al.),[24,25] HERON reaction of dialkoxyamides (S. A. Glover et al.),[26] silylated enoldiazoacetates (M. P. Doyle et al.),[27] and microflow photochemistry (M. Oelgemöller et al.).[28]
The lively late-afternoon poster sessions on the patio with a view of the sunset and reef sea life (including whales on occasion) are a recurring and unforgettable part of the Heron Island Conferences (Fig. 2). It is also noteworthy that the interaction between so many scientists in a congenial atmosphere in a small space has led to several enduring collaborations (Fig. 3).
The next Heron Island Conference will take place on 9–15 July 2016, immediately following the IUPAC International Conference on Physical-Organic Chemistry in Sydney (3–8 July) organised by Dr Jason Harper (UNSW) and colleagues.
References
[1] P. G. Campbell, J. S. A. Ishibashi, L. N. Zakharov, S.-Y. Liu, Aust. J. Chem. 2014, 67, 521.| Crossref | GoogleScholarGoogle Scholar |
[2] A. Padwa, B. Cheng, Y. Zou, Aust. J. Chem. 2014, 67, 343.
| Crossref | GoogleScholarGoogle Scholar |
[3] W. Fudickar, T. Linker, Aust. J. Chem. 2014, 67, 320.
| Crossref | GoogleScholarGoogle Scholar |
[4] S. Fukuzumi, Y. Yamada, Aust. J. Chem. 2014, 67, 354.
| Crossref | GoogleScholarGoogle Scholar |
[5] J. E. Glover, P. G. Plieger, G. J. Rowlands, Aust. J. Chem. 2014, 67, 374.
| Crossref | GoogleScholarGoogle Scholar |
[6] S. J. Ryan, C. L. Francis, G. P. Savage, Aust. J. Chem. 2014, 67, 381.
| Crossref | GoogleScholarGoogle Scholar |
[7] N. Drinnan, C. Wentrup, Aust. J. Chem. 2014, 67, 525.
| Crossref | GoogleScholarGoogle Scholar |
[8] M. de Victoria-Rodriguez, P. Atienzar, O. Juanes, J. C. Rodríguez-Ubis, E. Brunet, H. García, Aust. J. Chem. 2014, 67, 389.
| Crossref | GoogleScholarGoogle Scholar |
[9] P. Comba, H. Wadepohl, A. Waleska, Aust. J. Chem. 2014, 67, 398.
| Crossref | GoogleScholarGoogle Scholar |
[10] S. M. Levonis, B. B. Pappin, A. Sharp, M. J. Kiefel, T. A. Houston, Aust. J. Chem. 2014, 67, 528.
| Crossref | GoogleScholarGoogle Scholar |
[11] Y. Uchiyama, J. S. Dolphin, R. L. Harlow, W. J. Marshall, A. J. Arduengo, Aust. J. Chem. 2014, 67, 405.
| Crossref | GoogleScholarGoogle Scholar |
[12] S. Sun, I. Tirotta, N. Zia, C. A. Hutton, Aust. J. Chem. 2014, 67, 411.
| Crossref | GoogleScholarGoogle Scholar |
[13] A. Chakraborty, J. Fulara, J. P. Maier, Aust. J. Chem. 2014, 67, 416.
| Crossref | GoogleScholarGoogle Scholar |
[14] R. Colombo, K. O. Jeon, D. M. Huryn, M. G. LaPorte, P. Wipf, Aust. J. Chem. 2014, 67, 420.
| Crossref | GoogleScholarGoogle Scholar |
[15] R. Kalescky, W. Zou, E. Kraka, D. Cremer, Aust. J. Chem. 2014, 67, 426.
| Crossref | GoogleScholarGoogle Scholar |
[16] W. Zou, D. Cremer, Aust. J. Chem. 2014, 67, 435.
| Crossref | GoogleScholarGoogle Scholar |
[17] T. Pasinszki, M. Krebsz, B. Hajgató, Aust. J. Chem. 2014, 67, 444.
| Crossref | GoogleScholarGoogle Scholar |
[18] T. Clark, J. S. Murray, P. Politzer, Aust. J. Chem. 2014, 67, 451.
| Crossref | GoogleScholarGoogle Scholar |
[19] D. K. Kölmel, N. Jung, S. Bräse, Aust. J. Chem. 2014, 67, 328.
| Crossref | GoogleScholarGoogle Scholar |
[20] R. N. Veedu, D. Kvaskoff, C. Wentrup, Aust. J. Chem. 2014, 67, 457.
| Crossref | GoogleScholarGoogle Scholar |
[21] H. Lissau, S. L. Broman, M. Jevric, A. Ø. Madsen, M. B. Nielsen, Aust. J. Chem. 2014, 67, 531.
| Crossref | GoogleScholarGoogle Scholar |
[22] C. Hubbert, M. Breunig, K. J. Carroll, F. Rominger, A. S. K. Hashmi, Aust. J. Chem. 2014, 67, 469.
| Crossref | GoogleScholarGoogle Scholar |
[23] T. Ikawa, S. Masuda, T. Nishiyama, A. Takagi, S. Akai, Aust. J. Chem. 2014, 67, 475.
| Crossref | GoogleScholarGoogle Scholar |
[24] A. S. K. Hashmi, B. Bechem, A. Loos, M. Hamzic, F. Rominger, H. Raaba, Aust. J. Chem. 2014, 67, 481.
| Crossref | GoogleScholarGoogle Scholar |
[25] A. S. K. Hashmi, S. Schäfer, Aust. J. Chem. 2014, 67, 500.
| Crossref | GoogleScholarGoogle Scholar |
[26] S. A. Glover, A. A. Rosser, A. A. Taherpour, B. W. Greatrex, Aust. J. Chem. 2014, 67, 507.
| Crossref | GoogleScholarGoogle Scholar |
[27] X. Xu, M. P. Doyle, Aust. J. Chem. 2014, 67, 365.
| Crossref | GoogleScholarGoogle Scholar |
[28] M. Oelgemöller, N. Hoffmann, O. Shvydkiv, Aust. J. Chem. 2014, 67, 337.
| Crossref | GoogleScholarGoogle Scholar |