Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science

Articles citing this paper

A Brief and Informationally Rich Naming System for Oligosaccharide Motifs of Heteroxylans Found in Plant Cell Walls*

Régis Fauré A B C , Christophe M. Courtin D , Jan A. Delcour D , Claire Dumon A B C , Craig B. Faulds E , Geoffrey B. Fincher F , Sébastien Fort G , Stephen C. Fry H , Sami Halila G , Mirjam A. Kabel I K , Laurice Pouvreau I , Bernard Quemener J , Alain Rivet G , Luc Saulnier J , Henk A. Schols I , Hugues Driguez G L and Michael J. O’Donohue A B C L
+ Author Affiliations
- Author Affiliations

A Université de Toulouse; INSA,UPS,INP; LISBP, 135 Avenue de Rangueil, 31077 Toulouse, France.

B INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, 31400 Toulouse, France.

C CNRS, UMR5504, 31400 Toulouse, France.

D Laboratory of Food Chemistry and Biochemistry, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20 bus 2463, 3001, Leuven, Belgium.

E Institute of Food Research, Sustainability of the Food Chain Exploitation Platform, Norwich Research Park, Norwich NR4 7UA, UK.

F Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia.

G Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS) (Affiliated with Joseph Fourier University and member of the Institut de Chimie Moléculaire de Grenoble FR-CNRS 2607), B.P. 53, 38041, Grenoble cedex 9, France.

H The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King’s Buildings, Mayfield Road, Edinburgh EH9 3JH, UK.

I Wageningen University, Laboratory of Food Chemistry, Bomenweg 2, 6703HD Wageningen, The Netherlands.

J UR1268 Biopolymères Interactions Assemblages, INRA, 44300 Nantes, France.

K Present address: Royal Nedalco, PO Box 6, 4600 AA Bergen op Zoom, The Netherlands.

L Corresponding authors. Email: hugues.driguez@cermav.cnrs.fr; michael.odonohue@insa-toulouse.fr

Australian Journal of Chemistry 62(6) 533-537 https://doi.org/10.1071/CH08458
Submitted: 23 October 2008  Accepted: 10 February 2009   Published: 10 June 2009



82 articles found in Crossref database.

Rheological characterisation of aqueous extracts of triticale grains and its relation to dietary fibre characteristics
Rakha A., Åman P., Andersson R.
Journal of Cereal Science. 2013 57(2). p.230
A plasmid borne, functionally novel glycoside hydrolase family 30 subfamily 8 endoxylanase from solventogenic Clostridium
St John Franz J., Dietrich Diane, Crooks Casey, Balogun Peter, de Serrano Vesna, Pozharski Edwin, Smith James Kennon, Bales Elizabeth, Hurlbert Jason
Biochemical Journal. 2018 475(9). p.1533
Partial acid-hydrolysis of TEMPO-oxidized arabinoxylans generates arabinoxylan-structure resembling oligosaccharides
Pandeirada Carolina O., Speranza Sofia, Bakx Edwin, Westphal Yvonne, Janssen Hans-Gerd, Schols Henk A.
Carbohydrate Polymers. 2022 276 p.118795
High-Throughput Generation of Product Profiles for Arabinoxylan-Active Enzymes from Metagenomes
Maurício da Fonseca Maria João, Armstrong Zachary, Withers Stephen G., Briers Yves, Master Emma R.
Applied and Environmental Microbiology. 2020 86(23).
Probing the determinants of the transglycosylation/hydrolysis partition in a retaining α-l-arabinofuranosidase
Zhao Jiao, Tandrup Tobias, Bissaro Bastien, Barbe Sophie, Poulsen Jens-Christian N., André Isabelle, Dumon Claire, Lo Leggio Leila, O’Donohue Michael J., Fauré Régis
New Biotechnology. 2021 62 p.68
Monoclonal antibodies to p-coumarate
Tranquet Olivier, Saulnier Luc, Utille Jean-Pierre, Ralph John, Guillon Fabienne
Phytochemistry. 2009 70(11-12). p.1366
Profiling of cool-season forage arabinoxylans via a validated HPAEC-PAD method
Joyce Glenna E., Kagan Isabelle A., Flythe Michael D., Davis Brittany E., Schendel Rachel R.
Frontiers in Plant Science. 2023 14
Identification and structural analysis of cereal arabinoxylan-derived oligosaccharides by negative ionization HILIC-MS/MS
Juvonen Minna, Kotiranta Markus, Jokela Jouni, Tuomainen Päivi, Tenkanen Maija
Food Chemistry. 2019 275 p.176
Characterization of (Glucurono)arabinoxylans from Oats Using Enzymatic Fingerprinting
Tian Lingmin, Gruppen Harry, Schols Henk A.
Journal of Agricultural and Food Chemistry. 2015 63(50). p.10822
Isolation and characterization of feruloylated arabinoxylan oligosaccharides from the perennial cereal grain intermediate wheat grass (Thinopyrum intermedium)
Schendel Rachel R., Becker Andreas, Tyl Catrin E., Bunzel Mirko
Carbohydrate Research. 2015 407 p.16
RNAi suppression of xylan synthase genes in wheat starchy endosperm
Wilkinson Mark D., Kosik Ondrej, Halsey Kirstie, Walpole Hannah, Evans Jessica, Wood Abigail J., Ward Jane L., Mitchell Rowan A. C., Lovegrove Alison, Shewry Peter R., Zhang Aimin
PLOS ONE. 2021 16(8). p.e0256350
Comprehensive Multidetector HPSEC Study on Solution Properties of Cereal Arabinoxylans in Aqueous and DMSO Solutions
Pitkänen Leena, Virkki Liisa, Tenkanen Maija, Tuomainen Päivi
Biomacromolecules. 2009 10(7). p.1962
Molecular Modeling of the Structural and Dynamical Properties of Secondary Plant Cell Walls: Influence of Lignin Chemistry
Charlier Landry, Mazeau Karim
The Journal of Physical Chemistry B. 2012 116(14). p.4163
Substrate recognition by a bifunctional GH30‐7 xylanase B from Talaromyces cellulolyticus
Nakamichi Yusuke, Watanabe Masahiro, Matsushika Akinori, Inoue Hiroyuki
FEBS Open Bio. 2020 10(6). p.1180
Presence of 1→3-linked 2-O-β-d-xylopyranosyl-α-l-arabinofuranosyl side chains in cereal arabinoxylans
Pastell Helena, Virkki Liisa, Harju Essi, Tuomainen Päivi, Tenkanen Maija
Carbohydrate Research. 2009 344(18). p.2480
Temporal and spatial changes in cell wall composition in developing grains of wheat cv. Hereward
Toole G. A., Le Gall G., Colquhoun I. J., Nemeth C., Saulnier L., Lovegrove A., Pellny T., Wilkinson M. D., Freeman J., Mitchell R. A. C., Mills E. N. C., Shewry P. R.
Planta. 2010 232(3). p.677
Functional roles of H98 and W99 and β2α2 loop dynamics in the α‐l‐arabinofuranosidase from Thermobacillus xylanilyticus
Arab‐Jaziri Faten, Bissaro Bastien, Barbe Sophie, Saurel Olivier, Débat Hélène, Dumon Claire, Gervais Virginie, Milon Alain, André Isabelle, Fauré Régis, O’Donohue Michael J.
The FEBS Journal. 2012 279(19). p.3598
Crystal structure of reducing‐end xylose‐releasing exoxylanase in subfamily 7 of glycoside hydrolase family 30
Nakamichi Yusuke, Watanabe Masahiro, Fujii Tatsuya, Inoue Hiroyuki, Morita Tomotake
Proteins: Structure, Function, and Bioinformatics. 2023 91(9). p.1341
Feasibility of using atmospheric pressure matrix-assisted laser desorption/ionization with ion trap mass spectrometry in the analysis of acetylated xylooligosaccharides derived from hardwoods and Arabidopsis thaliana
Chong Sun-Li, Nissilä Teemu, Ketola Raimo A., Koutaniemi Sanna, Derba-Maceluch Marta, Mellerowicz Ewa J., Tenkanen Maija, Tuomainen Päivi
Analytical and Bioanalytical Chemistry. 2011 401(9). p.2995
The use of β-xylanase for increasing the efficiency of biocatalytic conversion of crop residues to bioethanol
Juodeikiene Grazina, Basinskiene Loreta, Vidmantiene Daiva, Makaravicius Tomas, Bartkiene Elena, Schols Henk
Catalysis Today. 2011 167(1). p.113
A 1H NMR study of the specificity of α-l-arabinofuranosidases on natural and unnatural substrates
Borsenberger Vinciane, Dornez Emmie, Desrousseaux Marie-Laure, Massou Stéphane, Tenkanen Maija, Courtin Christophe M., Dumon Claire, O'Donohue Michael J., Fauré Régis
Biochimica et Biophysica Acta (BBA) - General Subjects. 2014 1840(10). p.3106
The molecular basis of the adsorption of xylans on cellulose surface
Mazeau Karim, Charlier Landry
Cellulose. 2012 19(2). p.337
Use of xylosidase 3C from Segatella baroniae to discriminate xylan non-reducing terminus substitution characteristics
St John Franz J., Bynum Loreen, Tauscheck Dante A., Crooks Casey
BMC Research Notes. 2024 17(1).
Mass Spectrometric Imaging of Wheat (Triticum spp.) and Barley (Hordeum vulgare L.) Cultivars: Distribution of Major Cell Wall Polysaccharides According to Their Main Structural Features
Veličković Dušan, Saulnier Luc, Lhomme Margot, Damond Aurélie, Guillon Fabienne, Rogniaux Hélène
Journal of Agricultural and Food Chemistry. 2016 64(32). p.6249
Spatial correlation of water distribution and fine structure of arabinoxylans in the developing wheat grain
Fanuel Mathieu, Grélard Florent, Foucat Loïc, Alvarado Camille, Arnaud Bastien, Chateigner-Boutin Anne-Laure, Saulnier Luc, Legland David, Rogniaux Hélène
Carbohydrate Polymers. 2022 294 p.119738
First Structural Insights into α-l-Arabinofuranosidases from the Two GH62 Glycoside Hydrolase Subfamilies
Siguier Béatrice, Haon Mireille, Nahoum Virginie, Marcellin Marlène, Burlet-Schiltz Odile, Coutinho Pedro M., Henrissat Bernard, Mourey Lionel, O'Donohue Michael J., Berrin Jean-Guy, Tranier Samuel, Dumon Claire
Journal of Biological Chemistry. 2014 289(8). p.5261
New insights into the structural and spatial variability of cell-wall polysaccharides during wheat grain development, as revealed through MALDI mass spectrometry imaging
Veličković Dušan, Ropartz David, Guillon Fabienne, Saulnier Luc, Rogniaux Hélène
Journal of Experimental Botany. 2014 65(8). p.2079
GH62 arabinofuranosidases: Structure, function and applications
Wilkens Casper, Andersen Susan, Dumon Claire, Berrin Jean-Guy, Svensson Birte
Biotechnology Advances. 2017 35(6). p.792
Enzymatic fingerprinting of arabinoxylan and β-glucan in triticale, barley and tritordeum grains
Rakha A., Saulnier L., Åman P., Andersson R.
Carbohydrate Polymers. 2012 90(3). p.1226
Development of an oligosaccharide library to characterise the structural variation in glucuronoarabinoxylan in the cell walls of vegetative tissues in grasses
Tryfona Theodora, Sorieul Mathias, Feijao Carolina, Stott Katherine, Rubtsov Denis V., Anders Nadine, Dupree Paul
Biotechnology for Biofuels. 2019 12(1).
Brachypodium distachyon grain: characterization of endosperm cell walls
Guillon F., Bouchet B., Jamme F., Robert P., Quemener B., Barron C., Larre C., Dumas P., Saulnier L.
Journal of Experimental Botany. 2011 62(3). p.1001
Strategy to identify reduced arabinoxylo-oligosaccharides by HILIC-MSn
Kouzounis Dimitrios, Sun Peicheng, Bakx Edwin J., Schols Henk A., Kabel Mirjam A.
Carbohydrate Polymers. 2022 289 p.119415
Molecular Design of Non-Leloir Furanose-Transferring Enzymes from an α-l-Arabinofuranosidase: A Rationale for the Engineering of Evolved Transglycosylases
Bissaro Bastien, Durand Julien, Biarnés Xevi, Planas Antoni, Monsan Pierre, O’Donohue Michael J., Fauré Régis
ACS Catalysis. 2015 5(8). p.4598
Characterisation of non-degraded oligosaccharides in enzymatically hydrolysed and fermented, dilute ammonia-pretreated corn stover for ethanol production
Jonathan M. C., DeMartini J., Van Stigt Thans S., Hommes R., Kabel M. A.
Biotechnology for Biofuels. 2017 10(1).
Four GH11 xylanases from the xylanolytic fungus Talaromyces versatilis act differently on (arabino)xylans
Lafond Mickael, Guais Olivier, Maestracci Marc, Bonnin Estelle, Giardina Thierry
Applied Microbiology and Biotechnology. 2014 98(14). p.6339
Arabinan saccharification by biogas reactor metagenome-derived arabinosyl hydrolases
Liu Yajing, Angelov Angel, Feiler Werner, Baudrexl Melanie, Zverlov Vladimir, Liebl Wolfgang, Vanderhaeghen Sonja
Biotechnology for Biofuels and Bioproducts. 2022 15(1).
Endo-1,4-β-xylanase-containing glycoside hydrolase families: characteristics, singularities and similarities
Mendonça Mauro, Barroca Mário, Collins Tony
Biotechnology Advances. 2023 65 p.108148
Negative electrospray ionization mass spectrometry: a method for sequencing and determining linkage position in oligosaccharides from branched hemicelluloses
Quéméner Bernard, Vigouroux Jacqueline, Rathahao Estelle, Tabet Jean Claude, Dimitrijevic Aleksandra, Lahaye Marc
Journal of Mass Spectrometry. 2015 50(1). p.247
Imaging Study by Mass Spectrometry of the Spatial Variation of Cellulose and Hemicellulose Structures in Corn Stalks
Arnaud B., Durand S., Fanuel M., Guillon F., Méchin V., Rogniaux H.
Journal of Agricultural and Food Chemistry. 2020 68(13). p.4042
Feruloylated Arabinoxylans Are Oxidatively Cross-Linked by Extracellular Maize Peroxidase but Not by Horseradish Peroxidase
Burr Sally J., Fry Stephen C.
Molecular Plant. 2009 2(5). p.883
Functional exploration of Pseudoalteromonas atlantica as a source of hemicellulose-active enzymes: Evidence for a GH8 xylanase with unusual mode of action
Ray Sayani, Vigouroux Jacqueline, Bouder Axelle, Francin Allami Mathilde, Geairon Audrey, Fanuel Mathieu, Ropartz David, Helbert William, Lahaye Marc, Bonnin Estelle
Enzyme and Microbial Technology. 2019 127 p.6
Wheat endosperm cell walls: Spatial heterogeneity of polysaccharide structure and composition using micro-scale enzymatic fingerprinting and FT-IR microspectroscopy
Saulnier Luc, Robert Paul, Grintchenko Mathilde, Jamme Frédéric, Bouchet Brigitte, Guillon Fabienne
Journal of Cereal Science. 2009 50(3). p.312
Glycoside Hydrolase Family 51 α‐l‐Arabinofuranosidases from Clostridium thermocellum and Cellvibrio japonicus Release O–5‐Feruloylated Arabinose
Schendel Rachel R., Puchbauer Ann‐Katrin, Bunzel Mirko
Cereal Chemistry. 2016 93(6). p.650
Production of oligosaccharides from extruded wheat and rye biomass using enzymatic treatment
Makaravicius Tomas, Basinskiene Loreta, Juodeikiene Grazina, van Gool Martine P., Schols Henk A.
Catalysis Today. 2012 196(1). p.16
Separation of isomeric cereal-derived arabinoxylan-oligosaccharides by collision induced dissociation-travelling wave ion mobility spectrometry-tandem mass spectrometry (CID-TWIMS-MS/MS)
Juvonen Minna, Bakx Edwin, Schols Henk, Tenkanen Maija
Food Chemistry. 2022 366 p.130544
A New Subfamily of Glycoside Hydrolase Family 30 with Strict Xylobiohydrolase Function
Crooks Casey, Bechle Nathan J., St John Franz J.
Frontiers in Molecular Biosciences. 2021 8
Action of three GH51 and one GH54 α-arabinofuranosidases on internally and terminally located arabinofuranosyl branches
Koutaniemi Sanna, Tenkanen Maija
Journal of Biotechnology. 2016 229 p.22
Benefits of β‐xylanase for wheat biomass conversion to bioethanol
Juodeikiene Grazina, Basinskiene Loreta, Vidmantiene Daiva, Makaravicius Tomas, Bartkiene Elena
Journal of the Science of Food and Agriculture. 2012 92(1). p.84
The xyl-doc gene cluster of Ruminiclostridium cellulolyticum encodes GH43- and GH62-α-l-arabinofuranosidases with complementary modes of action
Mroueh Mohamed, Aruanno Marion, Borne Romain, de Philip Pascale, Fierobe Henri-Pierre, Tardif Chantal, Pagès Sandrine
Biotechnology for Biofuels. 2019 12(1).
Evolution of glucuronoxylan side chain variability in vascular plants and the compensatory adaptations of cell wall–degrading hydrolases
Yu Li, Wilson Louis F. L., Terrett Oliver M., Wurman‐Rodrich Joel, Łyczakowski Jan J., Yu Xiaolan, Krogh Kristian B. R. M., Dupree Paul
New Phytologist. 2024
Chrysosporium lucknowense C1 arabinofuranosidases are selective in releasing arabinose from either single or double substituted xylose residues in arabinoxylans
Pouvreau Laurice, Joosten Rob, Hinz Sandra W.A., Gruppen Harry, Schols Henk A.
Enzyme and Microbial Technology. 2011 48(4-5). p.397
The α-glucuronidase Agu1 from Schizophyllum commune is a member of a novel glycoside hydrolase family (GH115)
Chong Sun-Li, Battaglia Evy, Coutinho Pedro M., Henrissat Bernard, Tenkanen Maija, de Vries Ronald P.
Applied Microbiology and Biotechnology. 2011 90(4). p.1323
Production of arabinoxylan-oligosaccharide mixtures of varying composition from rye bran by a combination of process conditions and type of xylanase
Falck Peter, Aronsson Anna, Grey Carl, Stålbrand Henrik, Nordberg Karlsson Eva, Adlercreutz Patrick
Bioresource Technology. 2014 174 p.118
Barley (2014)
Trafford Kay, Fincher Geoffrey B.
Oligosaccharide Binding and Thermostability of Two Related AA9 Lytic Polysaccharide Monooxygenases
Tandrup Tobias, Tryfona Theodora, Frandsen Kristian Erik Høpfner, Johansen Katja Salomon, Dupree Paul, Lo Leggio Leila
Biochemistry. 2020 59(36). p.3347
Reassigning the role of a mesophilic xylan hydrolysing family GH43 β-xylosidase from Bacteroides ovatus, BoExXyl43A as exo-β-1,4-xylosidase
Gavande Parmeshwar Vitthal, Ji Shyam, Cardoso Vânia, M.G.A. Fontes Carlos, Goyal Arun
Current Research in Biotechnology. 2024 7 p.100191
A rice GT61 glycosyltransferase possesses dual activities mediating 2-O-xylosyl and 2-O-arabinosyl substitutions of xylan
Zhong Ruiqin, Zhou Dayong, Phillips Dennis R., Adams Earle R., Chen Lirong, Rose John P., Wang Bi-Cheng, Ye Zheng-Hua
Planta. 2024 259(5).
Mutation of a pH-modulating residue in a GH51 α-l-arabinofuranosidase leads to a severe reduction of the secondary hydrolysis of transfuranosylation products
Bissaro Bastien, Saurel Olivier, Arab-Jaziri Faten, Saulnier Luc, Milon Alain, Tenkanen Maija, Monsan Pierre, O'Donohue Michael J., Fauré Régis
Biochimica et Biophysica Acta (BBA) - General Subjects. 2014 1840(1). p.626
Hydrolysis of wheat flour arabinoxylan, acid-debranched wheat flour arabinoxylan and arabino-xylo-oligosaccharides by β-xylanase, α-l-arabinofuranosidase and β-xylosidase
McCleary Barry V., McKie Vincent A., Draga Anna, Rooney Edward, Mangan David, Larkin Jennifer
Carbohydrate Research. 2015 407 p.79
Structural insights of Rm Xyn10A – A prebiotic-producing GH10 xylanase with a non-conserved aglycone binding region
Aronsson Anna, Güler Fatma, Petoukhov Maxim V., Crennell Susan J., Svergun Dmitri I., Linares-Pastén Javier A., Nordberg Karlsson Eva
Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 2018 1866(2). p.292
Changes in the arabinoxylan fraction of wheat grain during alcohol production
Kosik Ondrej, Powers Stephen J., Chatzifragkou Afroditi, Prabhakumari Parvathy Chandran, Charalampopoulos Dimitris, Hess Linde, Brosnan James, Shewry Peter R., Lovegrove Alison
Food Chemistry. 2017 221 p.1754
Novel xylanolytic triple domain enzyme targeted at feruloylated arabinoxylan degradation
Holck Jesper, Djajadi Demi T., Brask Jesper, Pilgaard Bo, Krogh Kristian B.R.M., Meyer Anne S., Lange Lene, Wilkens Casper
Enzyme and Microbial Technology. 2019 129 p.109353
Differences in extractability under subcritical water reveal interconnected hemicellulose and lignin recalcitrance in birch hardwoods
Martínez-Abad Antonio, Giummarella Nicola, Lawoko Martin, Vilaplana Francisco
Green Chemistry. 2018 20(11). p.2534
Biochemistry and physiological roles of enzymes that ‘cut and paste’ plant cell-wall polysaccharides
Franková Lenka, Fry Stephen C.
Journal of Experimental Botany. 2013 64(12). p.3519
Analysis of the substrate specificity of α-L-arabinofuranosidases by DNA sequencer-aided fluorophore-assisted carbohydrate electrophoresis
Maurício da Fonseca Maria João, Jurak Edita, Kataja Kim, Master Emma R., Berrin Jean-Guy, Stals Ingeborg, Desmet Tom, Van Landschoot Anita, Briers Yves
Applied Microbiology and Biotechnology. 2018 102(23). p.10091
Screening for distinct xylan degrading enzymes in complex shake flask fermentation supernatants
Van Gool M.P., Vancsó I., Schols H.A., Toth K., Szakacs G., Gruppen H.
Bioresource Technology. 2011 102(10). p.6039
Arabinoxylan source and xylanase specificity influence the production of oligosaccharides with prebiotic potential
Rudjito Reskandi C., Jiménez-Quero Amparo, Muñoz Maria Del Carmen Casado, Kuil Teun, Olsson Lisbeth, Stringer Mary Ann, Krogh Kristian Bertel Rømer Mørkeberg, Eklöf Jens, Vilaplana Francisco
Carbohydrate Polymers. 2023 320 p.121233
GH30-7 Endoxylanase C from the Filamentous Fungus Talaromyces cellulolyticus
Nakamichi Yusuke, Fujii Tatsuya, Fouquet Thierry, Matsushika Akinori, Inoue Hiroyuki, Master Emma R.
Applied and Environmental Microbiology. 2019 85(22).
Characterization of Oligomeric Xylan Structures from Corn Fiber Resistant to Pretreatment and Simultaneous Saccharification and Fermentation
Appeldoorn Maaike M., Kabel Mirjam A., Van Eylen David, Gruppen Harry, Schols Henk A.
Journal of Agricultural and Food Chemistry. 2010 58(21). p.11294
A grass-specific cellulose–xylan interaction dominates in sorghum secondary cell walls
Gao Yu, Lipton Andrew S., Wittmer Yuuki, Murray Dylan T., Mortimer Jenny C.
Nature Communications. 2020 11(1).
Characterisation of the Effect of the Spatial Organisation of Hemicellulases on the Hydrolysis of Plant Biomass Polymer
Enjalbert Thomas, De La Mare Marion, Roblin Pierre, Badruna Louise, Vernet Thierry, Dumon Claire, Montanier Cédric Y.
International Journal of Molecular Sciences. 2020 21(12). p.4360
Enhancing the chemoenzymatic synthesis of arabinosylated xylo-oligosaccharides by GH51 α-l-arabinofuranosidase
Arab-Jaziri Faten, Bissaro Bastien, Tellier Charles, Dion Michel, Fauré Régis, O’Donohue Michael J.
Carbohydrate Research. 2015 401 p.64
Progress and future prospects for pentose-specific biocatalysts in biorefining
Dumon Claire, Song Letian, Bozonnet Sophie, Fauré Régis, O’Donohue Michael J.
Process Biochemistry. 2012 47(3). p.346
Spatial and temporal distribution of cell wall polysaccharides during grain development of Brachypodium distachyon
Francin-Allami Mathilde, Alvarado Camille, Daniel Sylviane, Geairon Audrey, Saulnier Luc, Guillon Fabienne
Plant Science. 2019 280 p.367
Characterization of the arabinoxylan-degrading machinery of the thermophilic bacterium Herbinix hemicellulosilytica—Six new xylanases, three arabinofuranosidases and one xylosidase
Mechelke M., Koeck D.E., Broeker J., Roessler B., Krabichler F., Schwarz W.H., Zverlov V.V., Liebl W.
Journal of Biotechnology. 2017 257 p.122
Biochemical and Structural Characterization of Thermostable GH159 Glycoside Hydrolases Exhibiting α-L-Arabinofuranosidase Activity
Baudrexl Melanie, Fida Tarik, Berk Berkay, Schwarz Wolfgang H., Zverlov Vladimir V., Groll Michael, Liebl Wolfgang
Frontiers in Molecular Biosciences. 2022 9
Thermostable recombinant xylanases from Nonomuraea flexuosa and Thermoascus aurantiacus show distinct properties in the hydrolysis of xylans and pretreated wheat straw
Zhang Junhua, Siika-aho Matti, Puranen Terhi, Tang Ming, Tenkanen Maija, Viikari Liisa
Biotechnology for Biofuels. 2011 4(1). p.12
Spectroscopic Analysis of Diversity of Arabinoxylan Structures in Endosperm Cell Walls of Wheat Cultivars (Triticum aestivum) in the HEALTHGRAIN Diversity Collection
Toole Geraldine A., Le Gall Gwénaëlle, Colquhoun Ian J., Johnson Phil, Bedö Zoltan, Saulnier Luc, Shewry Peter R., Mills E. N. Clare
Journal of Agricultural and Food Chemistry. 2011 59(13). p.7075
The first crystal structure of a xylobiose‐bound xylobiohydrolase with high functional specificity from the bacterial glycoside hydrolase family 30, subfamily 10
St John Franz J., Crooks Casey, Kim Youngchang, Tan Kemin, Joachimiak Andrzej
FEBS Letters. 2022 596(18). p.2449
Down-Regulation of the CSLF6 Gene Results in Decreased (1,3;1,4)-β-d-Glucan in Endosperm of Wheat
Nemeth Csilla, Freeman Jackie, Jones Huw D., Sparks Caroline, Pellny Till K., Wilkinson Mark D., Dunwell Jim, Andersson Annica A.M., Åman Per, Guillon Fabienne, Saulnier Luc, Mitchell Rowan A.C., Shewry Peter R.
Plant Physiology. 2010 152(3). p.1209
The two Rasamsonia emersonii α-glucuronidases, ReGH67 and ReGH115, show a different mode-of-action towards glucuronoxylan and glucuronoxylo-oligosaccharides
Martínez Patricia Murciano, Appeldoorn Maaike M., Gruppen Harry, Kabel Mirjam A.
Biotechnology for Biofuels. 2016 9(1).
Influence of the molecular motifs of mannan and xylan populations on their recalcitrance and organization in spruce softwoods
Martínez-Abad Antonio, Jiménez-Quero Amparo, Wohlert Jakob, Vilaplana Francisco
Green Chemistry. 2020 22(12). p.3956

Committee on Publication Ethics


Abstract Export Citation Get Permission