The Mechanism(S) of the Addition of Alcohols to Protonated Acetone in the Gas-Phase
Australian Journal of Chemistry
39(6) 839 - 845
Published: 1986
Abstract
The gas phase reactions of the systems Me2C=+OH/ROH (R = Me and Pri ) have been investigated by using a combination of experimental [ion cyclotron resonance ( i.c.r .) and flowing afterglow ( f.a .)] and ab initio (4-31G, GAUSSIAN 82) methods. A stabilized adduct, thought to correspond to Me2C=+OH...O(H)R, is observed when R = Pri but not for Me. Decomposing forms of adducts eliminate water; 18O labelling shows the major (overall) reaction to be
Me2C=+OH+R18OH → Me2C=+(18O)R+H2O
Ab initio calculations indicate ( i ) that the product ion in this reaction is produced by two channels, both proceeding through Me2(HO)C-+O(H)R; one directly, the other indirectly through Me2C=+OH...O(H)R, and (ii) that the transition state for the key proton transfer reaction
Me2(HO)C-+O(H)Me → Me2( MeO )C-+OH2 is of higher energy than reactants. The latter result suggests that precursor ion Me2C=+O needs to be vibrationally hot for the elimination of water to occur: a comparison of i.c.r . and f.a . experiments confirms this to be the case.
https://doi.org/10.1071/CH9860839
© CSIRO 1986