Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW (Open Access)

The cyclobutene diester approach to alkyl citrate natural products

Nikolai P. Rossouw A and Mark A. Rizzacasa https://orcid.org/0000-0002-7297-1303 A *
+ Author Affiliations
- Author Affiliations

A School of Chemistry, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Vic. 3010, Australia.

* Correspondence to: masr@unimelb.edu.au

Handling Editor: Curt Wentrup

Australian Journal of Chemistry 77, CH24088 https://doi.org/10.1071/CH24088
Submitted: 3 July 2024  Accepted: 24 July 2024  Published online: 22 August 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

This review outlines the synthesis of alkyl citrate natural products using cyclobutene diester precursors. The approach is efficient and stereoselective and provides the correct oxidation state of the citrate core of these compounds. The synthesis of a number of alkyl citrates along with some higher oxidised members of this family is detailed.

Keywords: alkyl citrates, cyclobutenes, natural products, oxidation, rearrangement, total synthesis.

References

Watanabe S, Hirai H, Kambara T, Kojima Y, Nlshida H, Sugiura A, Yamauchi Y, Yoshikawa N, Harwood HJ, Huang LH, Kojima N. CJ-13,981 and CJ-13,982, new squalene synthase inhibitors. J Antibiot 2001; 54: 1025-1030 54.
| Crossref | Google Scholar | PubMed |

Harris GH, Dufresne C, Joshua H, Koch LA, Zink DL, Salmon PM, Göklen KE, Kurtz MM, Rew DJ, Bergstrom JD, Wilson KE. Isolation, structure determination and squalene synthase activity of L-731,120 and L-731,128, alkyl citrate analogs of zaragozic acids A and B. Bioorg Med Chem Lett 1995; 5: 2403-2408.
| Crossref | Google Scholar |

Harris GH, Jones ETT, Meinz MS, Nallin-Omstead M, Helms GL, Bills GF, Zink D, Wilson KE. Isolation and structure elucidation of viridiofungins A, B and C. Tetrahedron Lett 1993; 34: 5235-5238.
| Crossref | Google Scholar |

Shiozawa H, Takahashi M, Takatsu T, Kinoshita T, Tanzawa K, Hosoya T, Furuya K, Takahashi S, Furihata K, Seto H. Trachyspic acid, a new metabolite produced by Talaromyces trachyspermus, that inhibits tumor cell heparanase: taxonomy of the producing strain, fermentation, isolation, structural elucidation, and biological activity. J Antibiot 1995; 48: 357-362.
| Crossref | Google Scholar | PubMed |

Singh SB, Zink DL, Doss GA, Polishook JD, Ruby C, Register E, Kelly TM, Bonfiglio C, Williamson JM, Kelly R. Citrafungins A and B, two new fungal metabolite inhibitors of GGTase I with antifungal activity. Org Lett 2004; 6: 337-340.
| Crossref | Google Scholar | PubMed |

Itazaki H, Nagashima K, Kawamura Y, Matsumoto K, Nakai H, Terui Y. Cinatrins, a novel family of phospholipase A2 inhibitors. I. Taxonomy and fermentation of the producing culture; isolation and structures of cinatrins. J Antibiot 1992; 45: 38-49.
| Crossref | Google Scholar | PubMed |

Tanaka K, Itazaki H, Yoshida T. Cinatrins, a novel family of phospholipase A2 inhibitors. II. Biological activities. J Antibiot 1992; 45: 50-55.
| Crossref | Google Scholar | PubMed |

Bergstrom JD, Dufresne C, Bills GF, Nallin-Omstead M, Byrne K. Discovery, biosynthesis, and mechanism of action of the zaragozic acids: potent inhibitors of squalene synthase. Annu Rev Microbiol 1995; 49: 607-639.
| Crossref | Google Scholar | PubMed |

Bergstrom JD, Kurtz MM, Rew DJ, Amend AM, Karkas JD, Bostedor RG, Bansal VS, Dufresne C, VanMiddlesworth FL, Hensens OD. Zaragozic acids: a family of fungal metabolites that are picomolar competitive inhibitors of squalene synthase. Proc Natl Acad Sci USA 1993; 90: 80-4.
| Crossref | Google Scholar | PubMed |

10  Dawson MJ, Farthing JE, Marshall PS, Middleton RF, O’Neill MJ, Shuttleworth A, Stylli C, Tait RM, Taylor PM, Wildman HG. The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activity. J Antibiot 1992; 45: 639-647.
| Crossref | Google Scholar | PubMed |

11  Sidebottom PJ, Highcock RM, Lane SJ, Procopiou PA, Watson NS. The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma. II. Structure elucidation. J Antibiot 1992; 45: 648-658.
| Crossref | Google Scholar | PubMed |

12  Jones CA, Sidebottom PJ, Cannell RJ, Noble D, Rudd BA. The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma. III. Biosynthesis. J Antibiot 1992; 45: 1492-1498.
| Crossref | Google Scholar | PubMed |

13  Rizzacasa MA, Sturgess D. Total synthesis of alkyl citrate natural products. Org Biomol Chem 2014; 12: 1367-1382.
| Crossref | Google Scholar | PubMed |

14  Nadin A, Nicolaou K. Chemistry and biology of the zaragozic acids (squalestatins). Angew Chem Int Ed Engl 1996; 35: 1622-1656.
| Crossref | Google Scholar |

15  Armstrong A, Blench TJ. Recent synthetic studies on the zaragozic acids (squalestatins). Tetrahedron 2002; 58: 9321-9349.
| Crossref | Google Scholar |

16  Newhouse T, Baran PS, Hoffmann RW. The economies of synthesis. Chem Soc Rev 2009; 38: 3010-3021.
| Crossref | Google Scholar | PubMed |

17  Cuzzupe AN, Di Florio R, White JM, Rizzacasa MA. Enantiospecific synthesis of the phospholipase A2 inhibitors (−)-cinatrin C1 and (+)-cinatrin C3. Org Biomol Chem 2003; 1: 3572-3577.
| Crossref | Google Scholar | PubMed |

18  Miesch M, Wendling F, Franck-Neumann M. Uncatalyzed [2+2] cycloaddition of cyclic ketenetrimethylsilylacetals with electrophilic acetylenes. Tetrahedron Lett 1999; 40: 839-842.
| Crossref | Google Scholar |

19  Miesch M, Wendling F. Uncatalyzed, solvent-free [2+2] cycloaddition of cyclic ketene trimethylsilyl acetals with electrophilic acetylenes. Eur J Org Chem 2000; 2000: 3381-3391.
| Crossref | Google Scholar |

20  Atkin L, Chen Z, Robertson A, Sturgess D, White JM, Rizzacasa MA. Synthesis of alkyl citrates (−)-CJ-13,981, (−)-CJ-13,982, and (−)-L-731,120 via a cyclobutene diester. Org Lett 2018; 20: 4255-4258.
| Crossref | Google Scholar | PubMed |

21  Calo F, Bondke A, Richardson J, White AJP, Barrett AGM. Total synthesis and determination of the absolute stereochemistry of the squalene synthase inhibitors CJ-13,981 and CJ-13,982. Tetrahedron Lett 2009; 50: 3388-3390.
| Crossref | Google Scholar |

22  Sturgess D, Chen Z, White JM, Rizzacasa MA. Enantiospecific total synthesis of the squalene synthase inhibitors (–)-CJ-13,982 and its enantiomer from a common intermediate. J Antibiot 2018; 71: 234-239.
| Crossref | Google Scholar | PubMed |

23  Rossouw NP, Rizzacasa MA, Polyzos A. Flow-assisted synthesis of alkyl citrate natural products. J Org Chem 2021; 86: 14223-14231.
| Crossref | Google Scholar | PubMed |

24  Watanabe S, Hirai H, Ishiguro M, Kambara T, Kojima Y, Matsunaga T, Nishida H, Suzuki Y, Sugiura A, Harwood HJ, Huang LH, Kojima N. CJ-15,183, a new inhibitor of squalene synthase produced by a fungus, Aspergillus aculeatus. J Antibiot 2001; 54: 904-910.
| Crossref | Google Scholar | PubMed |

25  Amer MFA, Takahashi K, Ishihara J, Hatakeyama S. Total synthesis of citrafungin A. Heterocycles 2007; 72: 181-185.
| Google Scholar |

26  Calo F, Richardson J, Barrett AGM. Total synthesis of citrafungin A. J Org Chem 2008; 73: 9692-9697.
| Crossref | Google Scholar | PubMed |

27  Tsegay S, Hügel H, Rizzacasa MA. Formal total synthesis of (+)-citrafungin A. Aust J Chem 2009; 62: 676-682.
| Crossref | Google Scholar |

28  Chen Z, Robertson A, White JM, Rizzacasa MA. Total synthesis and stereochemical reassignment of citrafungin A. Org Lett 2019; 21: 9663-9666.
| Crossref | Google Scholar | PubMed |

29  Nugent WA. MIB: an advantageous alternative to DAIB for the addition of organozinc reagents to aldehydes. Chem Commun 1999; 1999(15): 1369-1370.
| Crossref | Google Scholar |

30  Kumagai N, Shibasaki M. Synthetic studies of viridiofungins, broad-spectrum antifungal agents and serine palmitoyl transferase inhibitors. J Antibiot 2018; 71: 53-59.
| Crossref | Google Scholar | PubMed |

31  Pollex A, Millet A, Müller J, Hiersemann M, Abraham L. Ester dienolate [2,3]-Wittig rearrangement in natural product synthesis: diastereoselective total synthesis of the triester of viridiofungin A, A2, and A4. J Org Chem 2005; 70: 5579-5591.
| Crossref | Google Scholar | PubMed |

32  Goldup SM, Pilkington CJ, White AJP, Burton A, Barrett AGM. A simple, short, and flexible synthesis of viridiofungin derivatives. J Org Chem 2006; 71: 6185-6191.
| Crossref | Google Scholar | PubMed |

33  Ghosh AK, Kass J. A stereoselective synthesis of (-)-viridiofungin A utilizing a TiCl4-promoted asymmetric multicomponent reaction. Org Lett 2012; 14: 510-512.
| Crossref | Google Scholar | PubMed |

34  Esumi T, Iwabuchi Y, Irie H, Hatakeyama S. Synthesis of viridiofungin A trimethyl ester and determination of the absolute structure of viridiofungin A. Tetrahedron Lett 1998; 39: 877-880.
| Crossref | Google Scholar |

35  Morokuma K, Takahashi K, Ishihara J, Hatakeyama S. Total synthesis of viridiofungin A. Chem Commun 2005; 2005(17): 2265-2267.
| Crossref | Google Scholar | PubMed |

36  Takechi S, Yasuda S, Kumagai N, Shibasaki M. A direct catalytic asymmetric aldol reaction of α-sulfanyl lactones: efficient synthesis of SPT inhibitors. Angew Chem Int Ed 2012; 51: 4218-4222 Takechi.
| Crossref | Google Scholar | PubMed |

37  Haneishi T, Kato Y, Fukuda H, Shimamura T, Tanokura T, Hiraide A, Koyama K, Fudesaka M, Maeda K, Nakata N, Nagase M, Yabuzaki T, Takao H, Kigawa M, Shimizu H, Shimizu M. Development of a kilogram-scale synthesis of a novel anti-HCV agent, CH4930808. Org Process Res Dev 2018; 22: 236-240.
| Crossref | Google Scholar |

38  Murakata M, Ikeda T. Stereoselective synthesis of the viridiofungin analogue NA808 from a chiral tetrahydrofuran-carboxylic acid. Org Biomol Chem 2017; 15: 6632-6639.
| Crossref | Google Scholar | PubMed |

39  Atkin L, Robertson A, White JM, Rizzacasa MA. Total synthesis of viridiofungins A and B. Org Lett 2021; 23: 3557-3560.
| Crossref | Google Scholar | PubMed |

40  Hong SH, Sanders DP, Lee CW, Grubbs RH. Prevention of undesirable isomerization during olefin metathesis. J Am Chem Soc 2005; 127: 17160-17161.
| Crossref | Google Scholar | PubMed |

41  Nogawa T, Ogita N, Futamura Y, Negishi S, Watanabe N, Osada H. Trachyspic acid 19-butyl ester, a new inhibitor of Plk1 polo box domain-dependent recognition from uncharacterized fungus RKGS-F2684. J Antibiot 2017; 70: 705-707.
| Crossref | Google Scholar | PubMed |

42  Zammit SC, White JM, Rizzacasa MA. Enantiospecific synthesis of (-)-trachyspic acid. Org Biomol Chem 2005; 3: 2073-2074.
| Crossref | Google Scholar | PubMed |

43  Zammit SC, Ferro V, Hammond E, Rizzacasa MA. Enantiospecific synthesis of the heparanase inhibitor (+)-trachyspic acid and stereoisomers from a common precursor. Org Biomol Chem 2007; 5: 2826-2834.
| Crossref | Google Scholar | PubMed |

44  Hirai K, Ooi H, Esumi T, Iwabuchi Y, Hatakeyama S. Total synthesis of (+/-)-trachyspic acid and determination of the relative configuration. Org Lett 2003; 5: 857-859.
| Crossref | Google Scholar | PubMed |

45  Morokuma K, Taira Y, Uehara Y, Shibahara S, Takahashi K, Ishihara J, Hatakeyama S. Asymmetric synthesis of (+)-trachyspic acid. Tetrahedron Lett 2008; 49: 6043-6045.
| Crossref | Google Scholar |

46  Calo F, Richardson J, White AJP, Barrett AGM. Enantioselective formal total synthesis of (−)-trachyspic acid. Tetrahedron Lett 2009; 50: 1566-1567.
| Crossref | Google Scholar |

47  Schmitt DC, Lam L, Johnson JS. Three-component coupling approach to trachyspic acid. Org Lett 2011; 13: 5136-5139.
| Crossref | Google Scholar | PubMed |

48  Rafaniello AA, Rizzacasa MA. Total synthesis of (+)-trachyspic acid 19-n-butyl ester. Org Lett 2020; 22: 1972-1975.
| Crossref | Google Scholar | PubMed |

49  Rossouw NP, Chen Z, White JM, Rizzacasa MA. Synthesis of more highly oxidized alkyl citrates via direct regio- and stereoselective oxidation. Org Lett 2023; 25: 8010-8015.
| Crossref | Google Scholar | PubMed |

50  Evans DA, Ennis MD, Mathre DJ. Asymmetric alkylation reactions of chiral imide enolates. A practical approach to the enantioselective synthesis of ɑ-substituted carboxylic acid derivatives. J Am Chem Soc 1982; 104: 1737-1739.
| Crossref | Google Scholar |

51  Marsh BJ, Carbery DR. One-pot o-nitrobenzenesulfonylhydrazide (NBSH) formation-diimide alkene reduction protocol. J Org Chem 2009; 74: 3186-3188.
| Crossref | Google Scholar | PubMed |

52  Myers AG, Yang BH, Chen H, McKinstry L, Kopecky DJ, Gleason JL. Pseudoephedrine as a practical chiral auxiliary for the synthesis of highly enantiomerically enriched carboxylic acids, alcohols, aldehydes, and ketones. J Am Chem Soc 1997; 119: 6496-6511.
| Crossref | Google Scholar |

53  Evans DA, Wesley Trotter B, Barrow JC. Aldol reactions of ketal-protected tartrate ester enolates. Asymmetric syntheses and absolute stereochemical assignments of phospholipase A2 inhibitors cinatrin C1 and C3. Tetrahedron 1997; 53: 8779-8794.
| Crossref | Google Scholar |

54  Cuzzupe AN, Di Florio R, Rizzacasa MA. Enantiospecific synthesis of the phospholipase A2 inhibitor (-)-cinatrin B. J Org Chem 2002; 67: 4392-4398.
| Crossref | Google Scholar | PubMed |

55  Urabe F, Nagashima S, Takahashi K, Ishihara J, Hatakeyama S. Total synthesis of (-)-cinatrin C1 based on an In(OTf)3-catalyzed Conia–ene reaction. J Org Chem 2013; 78: 3847-3857.
| Crossref | Google Scholar | PubMed |

56  Yakura T, Ozono A, Matsui K, Yamashita M, Fujiwara T. Application of a stereoselective rhodium(II)-catalyzed oxonium ylide formation–[2,3]-sigmatropic rearrangement of an α-diazo-β-keto ester to the synthesis of 2-epi-cinatrin C1 dimethyl ester. Synlett 2013; 24: 65-68.
| Crossref | Google Scholar |