Chiral 1-D coordination polymer chains featuring 1,1′-binaphthyl
Hui Min Tay A B , Shannon Thoonen A C and Carol Hua A *A
B
C
Abstract
Four 1-D chain coordination polymers containing bent 1,1′-binaphthyl ligands were synthesised with NiII, CuII and AgI. The use of (R)-4,4′-(2,2′-diethoxy-[1,1′-binaphthalene]-6,6′)dipyridine as a ligand yielded isostructural 1-D looping chains with NiII and CuII, whereas the use of AgI yielded both linear and helical 1-D chains. Changing the dipyridyl coordination groups to dicarboxylates in (S)-6,6′-dicarboxyl-2,2′-diethoxy-1,1′-binaphthalene yielded a 1-D looping chain with a CuII paddlewheel motif. The AgI 1-D chain features two crystallographically distinct 1-D chain morphologies with a triple helix and linear strips. The packing arrangement of the 1-D chains differs because of the intermolecular interactions present, with the steric bulk of the ethoxy substituent on the 1,1′-binaphthyl enabling the formation of large void spaces.
Keywords: 1,1′-binaphthyl, 1-D looping chains, chirality, coordination polymers, helical 1-D chains, packing, self-assembly, transition metals.
References
1 Brunel JM. BINOL: a versatile chiral reagent. Chem Rev 2005; 105: 857-898.
| Crossref | Google Scholar |
2 Yu F, Chen Y, Jiang H, Wang X. Recent advances of BINOL-based sensors for enantioselective fluorescence recognition. Analyst 2020; 145: 6769-6812.
| Crossref | Google Scholar |
3 Tan JSJ, Paton RS. Frontier molecular orbital effects control the hole-catalyzed racemization of atropisomeric biaryls. Chem Sci 2019; 10: 2285-2289.
| Crossref | Google Scholar |
4 Pasini D, Nitti A. Recent advances in sensing using atropoisomeric molecular receptors. Chirality 2016; 28: 116-123.
| Crossref | Google Scholar |
5 Zhang X, Yin J, Yoon J. Recent advances in development of chiral fluorescent and colorimetric sensors. Chem Rev 2014; 114: 4918-4959.
| Crossref | Google Scholar |
6 Pu L. Enantioselective fluorescent sensors: a tale of BINOL. Acc Chem Res 2012; 45: 150-163.
| Crossref | Google Scholar |
7 Thoonen S, Hua C. Chiral detection with coordination polymers. Chem Asian J 2021; 16: 890-901.
| Crossref | Google Scholar |
8 Liang X, Liang W, Jin P, Wang H, Wu W, Yang C. Advances in chirality sensing with macrocyclic molecules. Chemosensors 2021; 9: 279-302.
| Crossref | Google Scholar |
9 Cui Y, Ngo HL, White PS, Lin W. Homochiral 3-D open frameworks assembled from 1- and 2-D coordination polymers. Chem Commun 2003; 2003: 994-995.
| Crossref | Google Scholar |
10 Cui Y, Ngo HL, White PS, Lin W. Hierarchical assembly of homochiral porous solids using coordination and hydrogen bonds. Inorg Chem 2003; 42: 652-654.
| Crossref | Google Scholar |
11 Deng W-T, Qu H, Huang Z-Y, Shi L, Tang Z-Y, Cao X-Y, Tao J. Facile synthesis of homochiral compounds integrating circularly polarized luminescence and two-photon excited fluorescence. Chem Commun 2019; 55: 2210-2213.
| Crossref | Google Scholar |
12 Sun X-P, Tang Z, Yao Z-S, Tao J. A homochiral 3D framework of mechanically interlocked 1D loops with solvent-dependent spin-state switching behaviors. Chem Commun 2020; 56: 133-136.
| Crossref | Google Scholar |
13 Tanaka K, Muraoka T, Otubo Y, Takahashi H, Ohnishi A. HPLC enantioseparation on a homochiral MOF–silica composite as a novel chiral stationary phase. RSC Adv 2016; 6: 21293-21301.
| Crossref | Google Scholar |
14 Wu C-D, Lin W. Highly porous, homochiral metal–organic frameworks: solvent-exchange-induced single-crystal to single-crystal transformations. Angew Chem Int Ed Engl 2005; 44: 1958-1961.
| Crossref | Google Scholar |
15 Zheng M, Liu Y, Wang C, Liu S, Lin W. Cavity-induced enantioselectivity reversal in a chiral metal–organic framework Brønsted acid catalyst. Chem Sci 2012; 3: 2623-2627.
| Crossref | Google Scholar |
16 Ma L, Wu C-D, Wanderley MM, Lin W. Single-crystal to single-crystal cross-linking of an interpenetrating chiral metal–organic framework and implications in asymmetric catalysis. Angew Chem Int Ed Engl 2010; 49: 8244-8248.
| Crossref | Google Scholar |
17 Wang Y, Gao K, Li J, Wang L, Wu J. Synthesis and characterization of a Cd compound for selectively sensing of nitro-explosives. Inorg Chem Commun 2018; 96: 189-193.
| Crossref | Google Scholar |
18 Wanderley MM, Wang C, Wu C-D, Lin W. A chiral porous metal–organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols. J Am Chem Soc 2012; 134: 9050-9053.
| Crossref | Google Scholar |
19 Ma L, Mihalcik DJ, Lin W. Highly porous and robust 4,8-connected metal−organic frameworks for hydrogen storage. J Am Chem Soc 2009; 131: 4610-4612.
| Crossref | Google Scholar |
20 Thoonen S, Tay HM, Hua C. A chiral binaphthyl-based coordination polymer as an enantioselective fluorescence sensor. Chem Commun 2022; 58: 4512-4515.
| Crossref | Google Scholar |
21 Zhang Z, Ji YR, Wojtas L, Gao W-Y, Ma S, Zaworotko MJ, Antilla JC. Two homochiral organocatalytic metal organic materials with nanoscopic channels. Chem Commun 2013; 49: 7693-7695.
| Crossref | Google Scholar |
22 Ma L, Lin W. Chirality-controlled and solvent-templated catenation isomerism in metal–organic frameworks. J Am Chem Soc 2008; 130: 13834-13835.
| Crossref | Google Scholar |
23 Ma L, Falkowski JM, Abney C, Lin W. A series of isoreticular chiral metal–organic frameworks as a tunable platform for asymmetric catalysis. Nat Chem 2010; 2: 838-846.
| Crossref | Google Scholar |
24 Thoonen S, Siripanich P, Hua L, Tay HM, Ramkissoon P, Smith TA, Lessio M, Hua C. Enhancing enantioselectivity in chiral metal organic framework fluorescent sensors. Inorg. Chem. Front. 2024; [Advance Article, published 18 May 2024].
| Crossref | Google Scholar |
25 Seter M, Dakternieks D, Duthie A. Chiral rings from BINOL dicarboxylic acids and alkane ditin(IV) linkers. Main Group Met Chem 2012; 35: 73-80.
| Crossref | Google Scholar |
26 Alcázar V, Morán jR, Diederich F. Chiral molecular clefts for dicarboxylic acid complexation. Isr J Chem 1992; 32: 69-77.
| Crossref | Google Scholar |
27 MacLean MWA, Wood TK, Wu G, Lemieux RP, Crudden CM. Chiral periodic mesoporous organosilicas: probing chiral induction in the solid state. Chem Mater 2014; 26: 5852-5859.
| Crossref | Google Scholar |
28 Coulson DR, Satek LC, Grim SO. Tetrakis(triphenylphosphine)palladium(0). In: Cotton FA, editor. Inorganic Syntheses. Vol. 13. Wiley; 2007. pp. 121–124. [Online book] doi:10.1002/9780470132449.ch23
29 Zhang Q-W, Li D, Li X, White PB, Mecinović J, Ma X, Ågren H, Nolte RJM, Tian H. Multicolor photoluminescence including white-light emission by a single host–guest complex. J Am Chem Soc 2016; 138: 13541-13550.
| Crossref | Google Scholar |
30 McPhillips TM, McPhillips SE, Chiu HJ, Cohen AE, Deacon AM, Ellis PJ, Garman E, Gonzalez A, Sauter NK, Phizackerley RP, Soltis SM, Kuhn P. Blu-Ice and the Distributed Control System: software for data acquisition and instrument control at macromolecular crystallography beamlines. J Synchrotron Radiat 2002; 9: 401-406.
| Crossref | Google Scholar |
31 Aragão D, Aishima J, Cherukuvada H, Clarken R, Clift M, Cowieson NP, Ericsson DJ, Gee CL, Macedo S, Mudie N, Panjikar S, Price JR, Riboldi-Tunnicliffe A, Rostan R, Williamson R, Caradoc-Davies TT. MX2: a high-flux undulator microfocus beamline serving both the chemical and macromolecular crystallography communities at the Australian Synchrotron. J Synchrotron Radiat 2018; 25: 885-891.
| Crossref | Google Scholar |
32 Sheldrick GM. SHELXT – integrated space-group and crystal-structure determination. Acta Cryst A 2015; 71: 3-8.
| Crossref | Google Scholar |
33 Sheldrick GM. Crystal structure refinement with SHELXL. Acta Cryst C 2015; 71: 3-8.
| Crossref | Google Scholar |
34 Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst 2009; 42: 339-341.
| Crossref | Google Scholar |