Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Coatings based on dopamine-modified hyaluronic acid and Pluronic F127 for tracheal intubation

Chenggang Wu https://orcid.org/0009-0008-0103-0873 A , Xiyi Yang B , Xiaofeng Tang A and Shuping Zhang https://orcid.org/0000-0002-2891-2613 A *
+ Author Affiliations
- Author Affiliations

A School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.

B Department of Invasive Technology, Shanghai Xuhui Central Hospital, Shanghai, 200030, PR China.

* Correspondence to: zhang_lucy9999@vip.126.com

Handling Editor: Richard Hoogenboom

Australian Journal of Chemistry 77, CH23218 https://doi.org/10.1071/CH23218
Submitted: 2 December 2023  Accepted: 19 March 2024  Published online: 17 April 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

Endotracheal intubation holds significant importance in trauma point care and emergency medicine. However, laryngeal injury and subsequent chronic complications can result from the friction between the mucosa and the tube during intubation. Here we present a lubricant coating based on hyaluronic acid. Inspired by mussels, hyaluronic acid was first conjugated with dopamine to obtain HD, and then a triblock copolymer Pluronic F127 (F127) was complexed with HD to form a micelle layer. Dopamine can assist coating deposition on the tube under weak alkaline conditions, while improving the coating stability. The micelle layer formed by F127 and HD provides excellent water retention and lubrication performance. The friction coefficient of the HD-F127 coating was 56% lower than that of the control, as determined by a friction performance test.

Keywords: dopamine, endotracheal intubation, friction, hyaluronic acid, lubrication, modification, Pluronic F127, polymers.

References

Kim JW, Park SO, Lee KR, Hong DY, Baek KJ, Lee YH, et al. Video laryngoscopy vs. direct laryngoscopy: which should be chosen for endotracheal intubation during cardiopulmonary resuscitation? A prospective randomized controlled study of experienced intubators. Resuscitation 2016; 105: 196-202.
| Crossref | Google Scholar | PubMed |

Kim J-H, Yasukawa A, Yonezawa S. Enhanced dispersion stability and fluidity of rutile TiO2 particles using surface fluorination. Mater Today Proc 2020; 20: 311-319.
| Crossref | Google Scholar |

Zhao B, Li Y-P, Wang Q, Ren Y, Zheng Z-L, Bai M-H, et al. Ultra-slippery, nonirritating, and anti-inflammatory hyaluronic acid-based coating to mitigate intubation injury. Chem Eng J 2022; 427: 130911.
| Crossref | Google Scholar |

Prasanna D, Bhat S. Nasotracheal intubation: an overview. J Maxillofac Oral Surg 2014; 13(4): 366-372.
| Crossref | Google Scholar | PubMed |

Brodsky MB, Akst LM, Jedlanek E, Pandian V, Blackford B, Price C, et al. Laryngeal injury and upper airway symptoms after endotracheal intubation during surgery: a systematic review and meta-analysis. Anesth Analg 2021; 132(4): 1023-1032.
| Crossref | Google Scholar | PubMed |

Sing J, Singh S, Gill R. Applications of biopolymer coatings in biomedical engineering. J Electrochem Sci Eng 2022; 13: 63-81.
| Crossref | Google Scholar |

Wang H, Li X, Jiang Y, Li M, Xiao Q, Zhao T, et al. A universal single-atom coating strategy based on tannic acid chemistry for multifunctional heterogeneous catalysis. Angew Chem Int Ed Engl 2022; 61(14): e202200465.
| Crossref | Google Scholar | PubMed |

Kotla NG, Mohd Isa IL, Larrañaga A, Maddiboyina B, Swamy SK, Sivaraman G, et al. Hyaluronic acid-based bioconjugate systems, scaffolds, and their therapeutic potential. Adv Healthc Mater 2023; 12(20): e2203104.
| Crossref | Google Scholar | PubMed |

Salsabila A, Pratama A, Nurrochman A, Hermawan H, Barlian A, Prajatelistia E. Preparation of tannic acid/hyaluronic acid coating to improve the corrosion resistance of implant material based on AZ31B magnesium alloy. Metals 2023; 13(3): 494.
| Crossref | Google Scholar |

10  Fallacara A, Baldini E, Manfredini S, Vertuani S. Hyaluronic acid in the third millennium. Polymers 2018; 10(7): 701.
| Crossref | Google Scholar | PubMed |

11  Susaki M, Matsumoto M. Molecular dynamics investigation of hyaluronan in biolubrication. Polymers 2022; 14(19): 4031.
| Crossref | Google Scholar | PubMed |

12  Lee S, Kim S, Park J, Lee JY. Universal surface modification using dopamine-hyaluronic acid conjugates for anti-biofouling. Int J Biol Macromol 2020; 151: 1314-1321.
| Crossref | Google Scholar | PubMed |

13  Buckley C, Montgomery TR, Szank T, Murray BA, Quigley C, Major I. Modification of hyaluronic acid to enable click chemistry photo-crosslinking of hydrogels with tailorable degradation profiles. Int J Biol Macromol 2023; 240: 124459.
| Crossref | Google Scholar | PubMed |

14  Tao C, Jin M, Yao H, Wang DA. Dopamine based adhesive nano-coatings on extracellular matrix (ECM) based grafts for enhanced host-graft interfacing affinity. Nanoscale 2021; 13(43): 18148-18159.
| Crossref | Google Scholar | PubMed |

15  Lin C, Huang Z, Wu T, Zhou X, Zhao R, Xu Z. A chitosan and hyaluronic acid-modified layer-by-layer lubrication coating for cardiovascular catheter. Colloids Surf B Biointerfaces 2022; 217: 112687.
| Crossref | Google Scholar |

16  Wan H, Lin C, Kaper HJ, Sharma PK. A polyethylene glycol functionalized hyaluronic acid coating for cardiovascular catheter lubrication. Mater Des 2020; 196: 109080.
| Crossref | Google Scholar |

17  Wang K, Zhu K, Zhu Z, Shao F, Qian R, Wang C, et al. Triptolide with hepatotoxicity and nephrotoxicity used in local delivery treatment of myocardial infarction by thermosensitive hydrogel. J Nanobiotechnol 2023; 21(1): 227.
| Crossref | Google Scholar | PubMed |

18  Lupu A, Rosca I, Gradinaru VR, Bercea M. Temperature induced gelation and antimicrobial properties of Pluronic F127 based systems. Polymers 2023; 15(2): 355.
| Crossref | Google Scholar | PubMed |

19  Cidade MT, Ramos DJ, Santos J, Carrelo H, Calero N, Borges JP. Injectable hydrogels based on pluronic/water systems filled with alginate microparticles for biomedical applications. Materials 2019; 12(7): 1083.
| Crossref | Google Scholar | PubMed |

20  Ramírez P, Muñoz J, Fainerman VB, Aksenenko EV, Mucic N, Miller R. Dynamic interfacial tension of triblock copolymers solutions at the water–hexane interface. Colloids Surf A Physicochem Eng Asp 2011; 391(1–3): 119-124.
| Crossref | Google Scholar |

21  Li YP, Liu W, Liu YH, Ren Y, Wang ZG, Zhao B, et al. Highly improved aqueous lubrication of polymer surface by noncovalently bonding hyaluronic acid-based hydration layer for endotracheal intubation. Biomaterials 2020; 262: 120336.
| Crossref | Google Scholar | PubMed |

22  Li S, Yang C, Li J, Zhang C, Zhu L, Song Y, et al. Progress in Pluronic F127 derivatives for application in wound healing and repair. Int J Nanomedicine 2023; 18: 4485-4505.
| Crossref | Google Scholar | PubMed |

23  Singh A, Zhan J, Ye Z, Elisseeff JH. Modular multifunctional poly(ethylene glycol) hydrogels for stem cell differentiation. Adv Funct Mater 2013; 23(5): 575-582.
| Crossref | Google Scholar | PubMed |

24  Kim JK, Srinivasan P, Kim JH, Choi JI, Park HJ, Byun MW, et al. Structural and antioxidant properties of gamma irradiated hyaluronic acid. Food Chem 2008; 109(4): 763-770.
| Crossref | Google Scholar | PubMed |

25  Yang M, Lee SY, Kim S, Koo JS, Seo JH, Jeong DI, et al. Selenium and dopamine-crosslinked hyaluronic acid hydrogel for chemophotothermal cancer therapy. J Control Release 2020; 324: 750-764.
| Crossref | Google Scholar | PubMed |

26  Hao S, Tian C, Bai Y, Wu L, Hao L, Kuang Y, et al. Photo-crosslinkable hyaluronic acid microgels with reactive oxygen species scavenging capacity for mesenchymal stem cell encapsulation. Int J Biol Macromol 2023; 243: 124971.
| Crossref | Google Scholar | PubMed |

27  Soto-Garcia LF, Guerrero-Rodriguez ID, Hoang L, Laboy-Segarra SL, Phan NTK, Villafuerte E, et al. Photocatalytic and photothermal antimicrobial mussel-inspired nanocomposites for biomedical applications. Int J Mol Sci 2023; 24(17): 13272.
| Crossref | Google Scholar | PubMed |

28  Zhou Q, Zhang Z, Chen T, Guo X, Zhou S. Preparation and characterization of thermosensitive Pluronic F127-b-poly(ɛ-caprolactone) mixed micelles. Colloids Surf B Biointerfaces 2011; 86(1): 45-57.
| Crossref | Google Scholar | PubMed |

29  Ye H, Xia Y, Liu Z, Huang R, Su R, Qi W, et al. Dopamine-assisted deposition and zwitteration of hyaluronic acid for the nanoscale fabrication of low-fouling surfaces. J Mater Chem B 2016; 4(23): 4084-4091.
| Crossref | Google Scholar | PubMed |

30  Bai MH, Zhao B, Liu Z-Y-T, Zheng ZL, Wei X, Li L, et al. Mucosa-like conformal hydrogel coating for aqueous lubrication. Adv Mater 2022; 34(46): 2108848.
| Crossref | Google Scholar | PubMed |

31  da Silva LCE, Borges AC, de Oliveira MG, de Farias MA. Visualization of supramolecular structure of Pluronic F127 micellar hydrogels using cryo-TEM. MethodsX 2020; 7: 101084.
| Crossref | Google Scholar | PubMed |

32  Sangitra SN, Pujala RK. Effect of small amounts of akaganeite (β-FeOOH) nanorods on the gelation, phase behaviour and injectability of thermoresponsive Pluronic F127. Soft Matter 2023; 19(31): 5869-5879.
| Crossref | Google Scholar | PubMed |